Welcome to Visit BULLETIN OF THE CHINESE CERAMIC SOCIETY! Today is

BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (9): 3399-3406.

• Ceramics • Previous Articles     Next Articles

Structure and Chemical Durability of Actinide Nuclides Solidified by High-Entropy Pyrochlore (La1/6Pr1/6Nd1/6Sm1/6Eu1/6Gd1/6)2Zr2O7

DU Zhanyuan, ZHU Yongchang, CUI Zhu, JIAO Yunjie, DONG Xuanjiang, WANG Dongyu, YANG Debo, WANG Hua   

  1. China Building Materials Academy Co., Ltd., Beijing 100024, China
  • Received:2024-01-29 Revised:2024-02-28 Online:2024-09-15 Published:2024-09-19

Abstract: High-entropy ceramics(HECs) are a potential target for high-level waste curing due to their excellent phase and chemical stability. In this work, a high-entropy rare-earth zirconate pyrochlore (La1/6Pr1/6Nd1/6Sm1/6Eu1/6Gd1/6)2Zr2O7 was designed. And the lanthanide element Ce was used as simulated radioactive actinide nuclides. A series of ceramic solidifications (La1/6Pr1/6Nd1/6Sm1/6Eu1/6Gd1/6)2(Zr1-XCeX)2O7(0≤X≤0.5) were prepared using a high temperature solid phase method to solidify Ce. The solidifying performances were evaluated by analyzing the physical phase composition, microstructure, microscopic morphology, and anti-leaching. The results show that all the nuclides are uniformly solidly dissolved into crystal structure. As the CeO2 content increases, the crystal structure changes from an ordered pyrochlore phase to a defective fluorite phase. The normalized leaching rates of Ce range from 10-7 g·m-2·d-1 to 10-6 g·m-2·d-1, showing excellent chemical stability.

Key words: high-entropy ceramics, high-entropy pyrochlore, high-level waste, ceramic solidification, chemical durability

CLC Number: