[1] CAMERON S J, HOSSEINIAN F, WILLMORE W G. A current overview of the biological and cellular effects of nanosilver[J]. International Journal of Molecular Sciences, 2018, 19(7): 2030. [2] PLOWMAN B J, TSCHULIK K, WALPORT E, et al. The fate of nano-silver in aqueous media[J]. Nanoscale, 2015, 7(29): 12361-12364. [3] HAN N M, WANG Z Y, SHEN X, et al. Graphene size-dependent multifunctional properties of unidirectional graphene aerogel/epoxy nanocomposites[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6580-6592. [4] CHU Z M, JIAO W C, HUANG Y F, et al. FDTS-modified SiO2/rGO wrinkled films with a micro-nanoscale hierarchical structure and anti-icing/deicing properties under condensation condition[J]. Advanced Materials Interfaces, 2020, 7(1): 1901446. [5] 刘增泽, 谭 芳, 刘燕群. 光催化纳米材料在工业废水处理中的应用[J]. 广州化工, 2021, 49(12): 7-10. LIU Z Z, TAN F, LIU Y Q. Application of photocatalytic nanomaterials in industrial wastewater treatment[J]. Guangzhou Chemical Industry, 2021, 49(12): 7-10 (in Chinese). [6] DAMODHARAN J. Nanomaterials in medicine:an overview[J]. Materials Today: Proceedings, 2021, 37: 383-385. [7] 田 野. 纳米Ag/AgCl的生物法制备及特性研究[D]. 哈尔滨: 东北林业大学, 2021. TIAN Y. Research on biosynthesis of Ag/AgCl nanoparticles and its characteristics[D].Harbin: Northeast Forestry University, 2021 (in Chinese). [8] HANMANT G S, KORATTI A, POREL M S. Facile tuning of Ag@AgCl cubical hollow nanoframes with efficient sunlight-driven photocatalytic activity[J]. Applied Surface Science, 2019, 465: 413-419. [9] SU M S, LIU H L, MA J J. Synthesis of cube-like Ag@AgCl photocatalyst with enhanced photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(10): 10707-10711. [10] WANG N N, CHENG K, XU Z F, et al. High-performance natural-sunlight-driven Ag/AgCl photocatalysts with a cube-like morphology and blunt edges via a bola-type surfactant-assisted synthesis[J]. Physical Chemistry Chemical Physics, 2020, 22(7): 3940-3952. [11] LI B H, WU S F, GAO X S. Theoretical calculation of a TiO2-based photocatalyst in the field of water splitting: a review[J]. Nanotechnology Reviews, 2020, 9(1): 1080-1103. [12] LIU C H, HUANG C Y, LEE P C, et al. AgCl-based selective laser melting photocatalytic module for degradation of azo dye and E. coli[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(4): 1127-1138. [13] QIN Z J, ZHENG Y K, WANG Y H, et al. Versatile roles of silver in Ag-based nanoalloys for antibacterial applications[J]. Coordination Chemistry Reviews, 2021, 449: 214218. [14] BOLAÑOS-BENÍTEZ V, MCDERMOTT F, GILL L, et al. Engineered silver nanoparticle (Ag-NP) behaviour in domestic on-site wastewater treatment plants and in sewage sludge amended-soils[J]. Science of the Total Environment, 2020, 722: 137794. [15] LIM B, XIA Y N. Metal nanocrystals with highly branched morphologies[J]. Angewandte Chemie International Edition, 2011, 50(1): 76-85. [16] 阎修业. 水热法合成Ag@AgCl还原氧化石墨烯复合材料及其光催化性能研究[D]. 武汉: 武汉科技大学, 2013. YAN X Y. Hydrothermal synthesis and photocatalytic properties of composites of Ag@AgCl and reduced graphene oxide[D].Wuhan: Wuhan University of Science and Technology, 2013 (in Chinese). [17] 王 婉. 模板法制备Ag/AgCl基可见光催化剂及其性能研究[D]. 开封: 河南大学, 2018. WANG W. Photocatalytic properties of Ag/AgCl-based visible-light-driven photocatalysts synthesizd by template method[D].Kaifeng: Henan University, 2018 (in Chinese). [18] AZARAKHSH S, BAHIRAEI H, HAIDARI G. Electrospun synthesis of silver/poly (vinyl alcohol) nano-fibers: investigation of microstructure and antibacterial activity[J]. Materials Letters, 2022, 309: 131370. [19] SHEN Y F, CHEN P L, XIAO D, et al. Spherical and sheetlike Ag/AgCl nanostructures: interesting photocatalysts with unusual facet-dependent yet substrate-sensitive reactivity[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(1): 602-610. [20] WANG Y P, CHEN P L, SHEN Y F, et al. Visible-light-driven Ag/AgCl plasmonic photocatalysts via a surfactant-assisted protocol: enhanced catalytic performance by morphology evolution from near-spherical to 1D structures[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(38): 25182-25190. [21] DAUPOR H, WONGNAWA S. Flower-like Ag/AgCl microcrystals: synthesis and photocatalytic activity[J]. Materials Chemistry and Physics, 2015, 159: 71-82. [22] JIA C C, YANG P, HUANG B B. Uniform Ag/AgCl necklace-like nano-heterostructures: fabrication and highly efficient plasmonic photocatalysis[J]. ChemCatChem, 2014, 6(2): 611-617. [23] AN C H, PENG S, SUN Y G. Facile synthesis of sunlight-driven AgCl: Ag plasmonic nanophotocatalyst[J]. Advanced Materials, 2010, 22(23): 2570-2574. [24] HAN L, WANG P, ZHU C Z, et al. Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst[J]. Nanoscale, 2011, 3(7): 2931-2935. [25] TANG Y X, JIANG Z L, XING G C, et al. Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes[J]. Advanced Functional Materials, 2013, 23(23): 2932-2940. [26] ZHAO Y Y, QIAN F, ZHAO C L, et al. Facile fabrication of ultrathin freestanding nanoporous Cu and Cu-Ag films with high SERS sensitivity by dealloying Mg-Cu(Ag)-Gd metallic glasses[J]. Journal of Materials Science & Technology, 2021, 70: 205-213. [27] WANG J Y, QIN Y Z, SHI Q C, et al. Cl--induced selective fabrication of 3D AgCl microcrystals by a one-pot synthesis method[J]. CrystEngComm, 2021, 23(29): 5116-5123. |