[1] 仲新华, 李享涛, 渠亚男, 等. 铁路混凝土抗硫酸盐侵蚀试验研究及技术对策[J]. 铁道建筑, 2019, 59(12): 151-154. ZHONG X H, LI X T, QU Y N, et al. Experimental study and technical countermeasures of resistance to sulfate corrosion for railway concrete[J]. Railway Engineering, 2019, 59(12): 151-154 (in Chinese). [2] 陶建强. 硫酸盐腐蚀环境铁路隧道衬砌混凝土耐久性提升技术研究[D]. 重庆: 重庆大学, 2019. TAO J Q. Study on durability improvement technology of railway tunnel lining concrete in sulfate corrosion environment[D]. Chongqing: Chongqing University, 2019 (in Chinese). [3] 姜 骞, 石 亮, 刘建忠, 等. 西南某隧道衬砌混凝土中的硫酸盐腐蚀破坏分析及对策[J]. 隧道建设, 2016, 36(8): 918-923. JIANG Q, SHI L, LIU J Z, et al. A case analysis of tunnel lining concrete under sulfate attack and it’s countermeasures[J]. Tunnel Construction, 2016, 36(8): 918-923 (in Chinese). [4] 王培荔, 万 飞, 郝晓燕. 杜公岭隧道衬砌结构加固方案优化研究[J]. 公路交通科技, 2021, 38(6): 32-38. WANG P L, WAN F, HAO X Y. Study on optimization of reinforcement scheme of dugongling tunnel lining structure[J]. Journal of Highway and Transportation Research and Development, 2021, 38(6): 32-38 (in Chinese). [5] HU M Y, LONG F M, TANG M S. The thaumasite form of sulfate attack in concrete of Yongan Dam[J]. Cement and Concrete Research, 2006, 36(10): 2006-2008. [6] 刘娟红, 邹 敏, 李 康, 等. 碳酸盐环境下水泥基材料性能劣化与腐蚀破坏的研究进展[J]. 材料导报, 2023, 37(19): 92-100. LIU J H, ZOU M, LI K, et al. Research progress on performance degradation and corrosion failure of cement-based materials in carbonate environment[J]. Materials Reports, 2023, 37(19): 92-100 (in Chinese). [7] 禹虹机. 不同类盐蚀对混凝土的宏-细观损伤机理[D]. 长春: 吉林大学, 2017, 10-12. YU H J. The macro-and meso-damage mechanism of concrete under different kinds of salt attack[D]. Changchun: Jilin University, 2017, 10-12 (in Chinese). [8] 董 芸, 杨华全, 王 磊. 碳酸侵蚀条件下水泥基材料性能劣化试验研究[J]. 建筑材料学报, 2014, 17(5): 868-874. DONG Y, YANG H Q, WANG L. Experimental study on property deterioration of cement-based materials under carbonic acid erosion[J]. Journal of Building Materials, 2014, 17(5): 868-874 (in Chinese). [9] LIN Y H, ZHU D J, ZENG D Z, et al. Experimental studies on corrosion of cement in CO2 injection wells under supercritical conditions[J]. Corrosion Science, 2013, 74: 13-21. [10] 周 辉, 郑 俊, 胡大伟, 等. 碳酸性水环境下隧洞衬砌结构劣化机制研究[J]. 岩土力学, 2019, 40(7): 2469-2477+2486. ZHOU H, ZHENG J, HU D W, et al. Deterioration mechanism of tunnel lining structure in the carbonated water environment[J]. Rock and Soil Mechanics, 2019, 40(7): 2469-2477+2486 (in Chinese). [11] 李茂森, 王 露, 王 军, 等. 大掺量矿物掺合料混凝土碳化行为研究进展[J]. 硅酸盐通报, 2023, 42(11): 3787-3798. LI M S, WANG L, WANG J, et al. Research progress on carbonation behavior of concrete with large volume of mineral admixture[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3787-3798 (in Chinese). [12] YIN S H, YANG Y F, ZHANG T S, et al. Effect of carbonic acid water on the degradation of Portland cement paste: corrosion process and kinetics[J]. Construction and Building Materials, 2015, 91: 39-46. [13] 肖 佳, 吴 婷, 孟庆业, 等. 碳硫硅钙石在不同阳离子作用下的形成研究[J]. 功能材料, 2014, 45(19): 19045-19049+19053. XIAO J, WU T, MENG Q Y, et al. Effects of different cations on the formation of thaumasite[J]. Journal of Functional Materials, 2014, 45(19): 19045-19049+19053 (in Chinese). [14] SHI C J, WANG D H, BEHNOOD A. Review of thaumasite sulfate attack on cement mortar and concrete[J]. Journal of Materials in Civil Engineering, 2012, 24(12): 1450-1460. [15] 王 冲, 于 超, 罗遥凌, 等. 不同侵蚀条件下水泥基材料碳硫硅钙石生成速度比较[J]. 同济大学学报(自然科学版), 2015, 43(5): 748-753. WANG C, YU C, LUO Y L, et al. Comparison of thaumasite sulfate attack formation speed under different erosion conditions[J]. Journal of Tongji University (Natural Science), 2015, 43(5): 748-753 (in Chinese). [16] 吴 萌, 姬永生, 张领雷, 等. 石膏对碳硫硅钙石型硫酸盐破坏的影响[J]. 硅酸盐学报, 2016, 44(11): 1571-1578. WU M, JI Y S, ZHANG L L, et al. Effect of gypsum on thaumasite form of sulfate attack[J]. Journal of the Chinese Ceramic Society, 2016, 44(11): 1571-1578 (in Chinese). [17] 李长成. 水泥基材料碳硫硅钙石型硫酸盐侵蚀破坏及预防措施研究[D]. 北京: 中国建筑材料科学研究总院, 2011. LI C C. Research on deterioration and preventive measures of thaumasite form of sulfate attack (TSA) in cement-based materials[D]. Beijing: China Building Materials Academy, 2011 (in Chinese). [18] SKAROPOULOU A, KAKALI G, TSIVILIS S. Thaumasite form of sulfate attack in limestone cement concrete: the effect of cement composition, sand type and exposure temperature[J]. Construction and Building Materials, 2012, 36: 527-533. [19] NIELSEN P, NICOLAI S, DARIMONT A, et al. Influence of cement and aggregate type on thaumasite formation in concrete[J]. Cement and Concrete Composites, 2014, 53: 115-126. [20] COLLETT G, CRAMMOND N J, SWAMY R N, et al. The role of carbon dioxide in the formation of thaumasite[J]. Cement and Concrete Research, 2004, 34(9): 1599-1612. [21] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development, State Administration for Market Regulation, PRC. Test method standard for physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Architecture and Construction Press, 2019 (in Chinese). [22] 余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法[D]. 南京: 东南大学, 2004. YU H F. Durability, mechanism and service life prediction method of high performance concrete in salt lake area[D].Nanjing: Southeast University, 2004 (in Chinese). [23] MOHAMMED HANEEFA K, SANTHANAM M, PARIDA F C. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment[J]. Nuclear Engineering and Design, 2014, 275: 287-299. [24] 吴 萌, 张云升, 刘志勇, 等. 水泥基材料碳硫硅钙石型硫酸盐侵蚀的研究进展[J]. 硅酸盐学报, 2022, 50(8): 2270-2283. WU M, ZHANG Y S, LIU Z Y, et al. Research progress on thaumasite form of sulfate attack in cement-based materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2270-2283 (in Chinese). [25] BONAVETTI V L, RAHHAL V F, IRASSAR E F. Studies on the carboaluminate formation in limestone filler-blended cements[J]. Cement and Concrete Research, 2001, 31(6): 853-859. [26] 李相国, 田 博, 何 超, 等. SO2-4/C3A对单矿C3S水泥浆体中碳硫硅钙石形成的影响[J]. 硅酸盐通报, 2022, 41(8): 2637-2643. LI X G, TIAN B, HE C, et al. Effect of SO2-4/C3A on the formation of carburite in C3S cement slurry[J]. Chinese Journal of Ceramics, 2022, 41(8): 2637-2643 (in Chinese). [27] SCHOLTZOVÁ E, KUCKOVÁ L, KOÍEK J, et al. Experimental and computational study of thaumasite structure[J]. Cement and Concrete Research, 2014, 59: 66-72. [28] WU M, ZHANG Y S, JI Y S, et al. A comparable study on the deterioration of limestone powder blended cement under sodium sulfate and magnesium sulfate attack at a low temperature[J]. Construction and Building Materials, 2020, 243: 118279. [29] ZHANG T S, GAO P, LUO R F, et al. Volumetric deformation of gap-graded blended cement pastes with large amount of supplementary cementitious materials[J]. Construction and Building Materials, 2014, 54: 339-347. [30] ZHANG S F, NIU D T. Hydration and mechanical properties of cement-steel slag system incorporating different activators[J]. Construction and Building Materials, 2023, 363: 129981. [31] SACA N, GEORGESCU M. Behavior of ternary blended cements containing limestone filler and fly ash in magnesium sulfate solution at low temperature[J]. Construction and Building Materials, 2014, 71: 246-253. [32] 周 阳. 水泥基材料碳硫硅钙石的形成演变与调控机制研究[D]. 武汉: 武汉理工大学, 2018. ZHOU Y. A research on the formation, evolution and regulation mechanism of thaumsite in cement-based materials[D].Wuhan: Wuhan University of Technology, 2018 (in Chinese). |