BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (7): 2317-2334.
Special Issue: 水泥混凝土
• Cement and Concrete • Next Articles
ZHANG Weidong1, WANG Yuan2, SONG Pengfei2, WANG Yakun2,3, LIU Qianqian2, WANG Xuhao2
Received:
2023-11-09
Revised:
2024-01-29
Online:
2024-07-15
Published:
2024-07-24
CLC Number:
ZHANG Weidong, WANG Yuan, SONG Pengfei, WANG Yakun, LIU Qianqian, WANG Xuhao. Research Progress on Multi-Field Coupling Damage Deterioration Mechanism of Concrete in Alpine Region[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2317-2334.
[1] LIU Z Z, LOU B W, SHA A M, et al. Microstructure characterization of Portland cement pastes influenced by lower curing pressures[J]. Construction and Building Materials, 2019, 227: 116636. [2] 李雪峰, 付 智, 王华牢. 青藏高原地区混凝土冻融环境量化方法[J]. 农业工程学报, 2018, 34(2): 169-175. LI X F, FU Z, WANG H L. Quantitative method for freezing-thawing environment of concrete in Qinghai-Tibet Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 169-175 (in Chinese). [3] 陈 扬, 童朝霞, 冯锦艳, 等. 含初始裂缝水泥混凝土路面对冲击荷载响应分析[J]. 北京航空航天大学学报, 2019, 45(7): 1474-1480. CHEN Y, TONG Z X, FENG J Y, et al. Dynamic analysis on cement concrete pavement with initial cracks under impact loading[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1474-1480 (in Chinese). [4] 何世钦, 贡金鑫. 弯曲荷载作用对混凝土中氯离子扩散的影响[J]. 建筑材料学报, 2005, 8(2): 134-138. HE S Q, GONG J X. Influence of flexural loading on permeability of chloride ion in concrete[J]. Journal of Building Materials, 2005, 8(2): 134-138 (in Chinese). [5] ROSSI P, VAN MIER J G M, TOUTLEMONDE F, et al. Effect of loading rate on the strength of concrete subjected to uniaxial tension[J]. Materials and Structures, 1994, 27(5): 260-264. [6] PEDERSEN R R, SIMONE A, SLUYS L J. An analysis of dynamic fracture in concrete with a continuum visco-elastic visco-plastic damage model[J]. Engineering Fracture Mechanics, 2008, 75(13): 3782-3805. [7] 李金玉, 曹建国, 徐文雨, 等. 混凝土冻融破坏机理的研究[J]. 水利学报, 1999, 30(1): 41-49. LI J Y, CAO J G, XU W Y, et al. Study on the mechanism of concrete destruction under frost action[J]. Journal of Hydraulic Engineering, 1999, 30(1): 41-49 (in Chinese). [8] 戴薇原, 孙伟民, 缪汉良. 再生混凝土的抗冻融性试验研究[J]. 混凝土, 2007(8): 69-71+74. DAI W Y, SUN W M, MIAO H L. Experimental study on freeze-thaw durability of recycled concrete[J]. Concrete, 2007(8): 69-71+74 (in Chinese). [9] 王晨霞, 刘 路, 曹芙波, 等. 冻融循环后再生混凝土力学性能试验研究[J]. 建筑结构学报, 2020, 41(12): 193-202. WANG C X, LIU L, CAO F B, et al. Experimental study on mechanical properties of recycled concrete after freeze-thaw cycles[J]. Journal of Building Structures, 2020, 41(12): 193-202 (in Chinese). [10] 洪锦祥, 缪昌文, 黄 卫, 等. 冻融损伤对混凝土疲劳性能的影响[J]. 土木工程学报, 2012, 45(6): 83-89. HONG J X, MIAO C W, HUANG W, et al. Influence of freeze-thaw damage on the fatigue life of concrete[J]. China Civil Engineering Journal, 2012, 45(6): 83-89 (in Chinese). [11] 刘瑞军. 荷载-氯盐耦合作用下混凝土结构使用寿命预测[J]. 全面腐蚀控制, 2020, 34(12): 57-60+65. LIU R J. Prediction of the service life of loaded concrete structures in chloride environment[J]. Total Corrosion Control, 2020, 34(12): 57-60+65 (in Chinese). [12] 樊 磊. 橡胶混凝土的基本力学性能及其受盐腐蚀与冲击荷载作用下的损伤机理研究[D]. 呼和浩特: 内蒙古工业大学, 2018. FAN L. Study on basic mechanical properties of rubber concrete and its damage mechanism under salt corrosion and impact load[D]. Hohhot: Inner Mongolia University of Tehchnology, 2018 (in Chinese). [13] 孙 奇. GFRP锚杆冻融循环与长期荷载作用力学性能试验研究[D]. 长沙: 中南大学, 2012. SUN Q. Experimental study on mechanical properties of GFRP bolt after freezing-thawing cycles and long-term load effects[D]. Changsha: Central South University, 2012 (in Chinese). [14] 张德尧, 张永军. 应力腐蚀对混凝土结构力学性能影响[J]. 低温建筑技术, 2015, 37(1): 37-39. ZHANG D Y, ZHANG Y J. Influence of stress corrosion on mechanical property of concrete structure[J]. Low Temperature Architecture Technology, 2015, 37(1): 37-39 (in Chinese). [15] LI Y, ZHAI Y, LIANG W B, et al. Dynamic mechanical properties and visco-elastic damage constitutive model of freeze-thawed concrete[J]. Materials, 2020, 13(18): 4056. [16] 张 辉, 潘友强, 张 健, 等. 水泥混凝土抗盐冻性能影响因素研究[J]. 重庆交通大学学报(自然科学版), 2013, 32(4): 597-600. ZHANG H, PAN Y Q, ZHANG J, et al. Influence factors of frost-salt resistance of cement concrete[J]. Journal of Chongqing Jiaotong University (Natural Science), 2013, 32(4): 597-600 (in Chinese). [17] 王稷良, 田 波, 刘 英. 氯盐类融雪剂对水泥混凝土盐冻破坏机理与影响因素研究[J]. 公路交通科技(应用技术版), 2009, 5(6): 67-69. WANG J L, TIAN B, LIU Y. Study on the mechanism and influencing factors of salt freezing damage of cement concrete by chlorine salt snow melting agent[J]. Journal of Highway and Transportation Research and Development, 2009, 5(6): 67-69 (in Chinese). [18] 欧阳男. 不同盐类环境下混凝土的抗冻性研究[J]. 公路交通技术, 2018, 34(3): 24-28. OUYANG N. Study on the concrete durability under different salt environment[J]. Technology of Highway and Transport, 2018, 34(3): 24-28 (in Chinese). [19] 屈 锋, 牛荻涛, 杨宇曦. 盐冻循环作用下粉煤灰混凝土性能试验研究[J]. 工业建筑, 2014, 44(6): 77-80. QU F, NIU D T, YANG Y X. Experimental study of performance of fly ash fiber concrete under the action of salt frost[J]. Industrial Construction, 2014, 44(6): 77-80 (in Chinese). [20] 吴泽媚, 陈东丰, 高培伟, 等. 氯盐和冻融双重作用对混凝土抗盐冻性的影响[J]. 硅酸盐通报, 2011, 30(6): 1244-1248. WU Z M, CHEN D F, GAO P W, et al. Effects of chloride salt and freezing-thawing on deicer-scaling resistance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(6): 1244-1248 (in Chinese). [21] WANG X, ZHANG J K, WANG X H, et al. Exploration of mechanisms of joint deterioration in concrete pavements regarding interfacial transition zone[J]. Advances in Civil Engineering, 2018, 2018: 3295954. [22] JULIO B. Effect of deicer and anti-icer chemicals on the durability, microstructure, and properties of cement-based materials[D]. Toronto: University of Toronto, 2009. [23] 谷志勇. 除冰盐对混凝土路面侵蚀破坏机理与预防措施[J]. 交通世界, 2012(9): 128-129. GU Z Y. Damage mechanism and preventive measures of deicing salt on concrete pavement erosion[J]. Transpo World, 2012(9): 128-129 (in Chinese). [24] 张 君, 居贤春, 公成旭. 混凝土中的裂缝对氯盐侵蚀作用的影响[J]. 哈尔滨工程大学学报, 2010, 31(6): 720-724. ZHANG J, JU X C, GONG C X. Effect of cracks in concrete on chloride penetration[J]. Journal of Harbin Engineering University, 2010, 31(6): 720-724 (in Chinese). [25] 刘 勇. 氯盐侵蚀对混凝土微观结构损伤的影响研究[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(3): 390-395. LIU Y. Study on the damage characteristics of concrete structures by chloride erosion[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2020, 52(3): 390-395 (in Chinese). [26] WANG X H, SADATI S, TAYLOR P, et al. Material characterization to assess effectiveness of surface treatment to prevent joint deterioration from oxychloride formation mechanism[J]. Cement and Concrete Composites, 2019, 104: 103394. [27] 郑晓宁, 刁 波, 孙 洋, 等. 混合侵蚀与冻融循环作用下混凝土力学性能劣化机理研究[J]. 建筑结构学报, 2010, 31(2): 111-116. ZHENG X N, DIAO B, SUN Y, et al. Study of deterioration mechanism of concrete in multi-aggressive and freeze-thaw environment[J]. Journal of Building Structures, 2010, 31(2): 111-116 (in Chinese). [28] 洪锦祥, 缪昌文, 刘加平, 等. 冻融损伤混凝土力学性能衰减规律[J]. 建筑材料学报, 2012, 15(2): 173-178. HONG J X, MIAO C W, LIU J P, et al. Degradation law of mechanical properties of concrete subjected to freeze-thaw cycles[J]. Journal of Building Materials, 2012, 15(2): 173-178 (in Chinese). [29] 施士升. 冻融循环对混凝土力学性能的影响[J]. 土木工程学报, 1997, 30(4): 35-42. SHI S S. Effect of freezing-thawing cycles on mechanical properties of concrete[J]. China Civil Engineering Journal, 1997, 30(4): 35-42 (in Chinese). [30] 刘文博, 袁 捷, 杨全兵. 除冰液对机场道面混凝土的破坏机理研究[J]. 华东交通大学学报, 2016, 33(5): 1-6. LIU W B, YUAN J, YANG Q B. Research on failure mechanism of deicing fluid in airport pavement concrete[J]. Journal of East China Jiaotong University, 2016, 33(5): 1-6 (in Chinese). [31] 田 威, 邢 凯, 谢永利. 冻融环境下混凝土损伤劣化机制的力学试验研究[J]. 实验力学, 2015, 30(3): 299-304. TIAN W, XING K, XIE Y L. Experimental study of damage degradation mechanism of concrete in freeze-thaw environment[J]. Journal of Experimental Mechanics, 2015, 30(3): 299-304 (in Chinese). [32] 姚 燕, 王 玲, 王振地, 等. 荷载与服役环境作用下混凝土耐久性的研究和进展[J]. 中国材料进展, 2018, 37(11): 855-865+879. YAO Y, WANG L, WANG Z D, et al. Research and progress on durability of concrete under combined mechanical load and environment actions[J]. Materials China, 2018, 37(11): 855-865+879 (in Chinese). [33] BAGHABRA AL-AMOUDI O S. Attack on plain and blended cements exposed to aggressive sulfate environments[J]. Cement and Concrete Composites, 2002, 24(3/4): 305-316. [34] 张云清, 余红发, 王甲春. 盐冻条件下混凝土结构表面的损伤规律研究[J]. 中国公路学报, 2009, 22(4): 57-63. ZHANG Y Q, YU H F, WANG J C. Study of surface damage rule of concrete structure exposed to salt freezing condition[J]. China Journal of Highway and Transport, 2009, 22(4): 57-63 (in Chinese). [35] 张家科, 袁 捷, 刘文博, 等. 基于工业扫描分析混凝土气泡结构与抗盐冻性能[J]. 同济大学学报(自然科学版), 2018, 46(1): 53-59. ZHANG J K, YUAN J, LIU W B, et al. Application of industrial computerized tomography to analyze air voids structure and salt scaling resistance of concrete[J]. Journal of Tongji University (Natural Science), 2018, 46(1): 53-59 (in Chinese). [36] 邢秉元, 程鹏宇, 唐继朋, 等. 冻融循环作用下饱水砂浆孔结构的演变规律[J]. 硅酸盐学报, 2021, 49(2): 331-339. XING B Y, CHENG P Y, TANG J P, et al. Pore structure evolution of water-saturated mortar under freeze-thaw cycles[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 331-339 (in Chinese). [37] 雷 斌, 吕 源, 李细涛, 等. 多因素耦合作用混凝土耐久性能的实验室模拟方法[J]. 实验技术与管理, 2020, 37(9): 58-63. LEI B, LYU Y, LI X T, et al. Laboratory simulation method of concrete durability under multi-factor coupling actions[J]. Experimental Technology and Management, 2020, 37(9): 58-63 (in Chinese). [38] 郭寅川, 申爱琴, 田 丰, 等. 动态疲劳荷载作用下路面混凝土力学性能研究[J]. 中国公路学报, 2017, 30(7): 18-24. GUO Y C, SHEN A Q, TIAN F, et al. Mechanical property of pavement cement concrete under dynamic fatigue load[J]. China Journal of Highway and Transport, 2017, 30(7): 18-24 (in Chinese). [39] 梁 杰. 冻融循环作用对混凝土冲击压缩性能影响试验研究[D]. 西安: 长安大学, 2019. LIANG J. Experimental study on the impact compression performance of concrete under freeze-thaw cycle[D]. Xi’an: Changan University, 2019 (in Chinese). [40] 张志鹏, 张凯章, 巩 达. 冲击荷载作用下玄武岩纤维混凝土低温力学性能试验研究[J]. 复合材料科学与工程, 2023(9): 36-41+66. ZHANG Z P, ZHANG K Z, GONG D. Experimental study on low temperature mechanical properties of basalt fiber concrete under impact load[J]. Composites Science and Engineering, 2023(9): 36-41+66 (in Chinese). [41] 张守丽. 冲击荷载作用下混凝土细观力学性能研究[D]. 兰州: 兰州理工大学, 2013. ZHANG S L. Meso-mechanical properties of concrete under impact loading[D].Lanzhou: Lanzhou University of Technology, 2013 (in Chinese). [42] 黄 涛. 冲击致损混凝土力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. HUANG T. Research on mechanical property of concrete with impact damage[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). [43] 李 超, 李 干, 岳松林, 等. 长龄期混凝土材料损伤与静/动态力学特性劣化机理研究现状[J]. 混凝土, 2024: 1-10. LI C, LI G, YUE S L, et al. Research status of material damage and deterioration mechanism of static/dynamic mechanical properties of long-age concrete[J]. Concrete, 2024: 1-10 (in Chinese). [44] 顾静宇. 冻-腐耦合作用下混凝土力学性能及微观机理研究[D]. 张家口: 河北建筑工程学院, 2020. GU J Y. Research on the mechanical properties and micromechanism of concrete under the coupling of freezing and corrosion[D]. Zhangjiakou: Hebei University of Architecture, 2020 (in Chinese). [45] LI H, GUO H L, ZHANG Y. Deterioration of concrete under the coupling action of freeze-thaw cycles and salt solution erosion[J]. Reviews on Advanced Materials Science, 2022, 61(1): 322-333. [46] ZHOU J G, WANG G H, LIU P, et al. Concrete durability after load damage and salt freeze-thaw cycles[J]. Materials, 2022, 15(13): 4380. [47] LONG X, TAN Y, WAN X M, et al. Effect of freeze-thaw cycles and chloride salt erosion coupling conditions on fatigue properties of PE-ECC[J]. Case Studies in Construction Materials, 2024, 20: e02726. [48] 曹瑞实, 田金亮. 不同除冰盐冻融环境下对混凝土耐久性的影响[J]. 硅酸盐通报, 2013, 32(12): 2632-2636. CAO R S, TIAN J L. Different deicing salt influence on the durability of concrete in freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(12): 2632-2636 (in Chinese). [49] 甘 磊, 冯先伟, 沈振中, 等. 盐冻交替作用下混凝土强度与细观孔结构关系[J]. 中南大学学报(自然科学版), 2023, 54(12): 4860-4869. GAN L, FENG X W, SHEN Z Z, et al. Relationship between strength and fine-scale pore structure of concrete under effect of salt-freezing alternation[J]. Journal of Central South University (Science and Technology), 2023, 54(12): 4860-4869 (in Chinese). [50] 甘 磊, 刘 源, 沈振中, 等. 硫酸盐侵蚀和冻融循环作用下混凝土损伤演化规律[J]. 华中科技大学学报(自然科学版), 2023, 51(11): 134-141. GAN L, LIU Y, SHEN Z Z, et al. Damage evolution law of concrete under sulfate attack and freeze-thaw cycle[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(11): 134-141 (in Chinese). [51] 李 准. 盐冻复合作用下早期受冻损伤玄武岩纤维混凝土的性能试验研究[D]. 郑州: 华北水利水电大学, 2023. LI Z. Experimental study on the performance of early frost-damaged basalt fiber concrete under the compound effect of salt and freezing[D].Zhengzhou: North China University of Water Resources and Electric Power, 2023 (in Chinese). [52] ZHENG X C, LIU F, LUO T, et al. Study on durability and pore characteristics of concrete under salt freezing environment[J]. Materials, 2021, 14(23): 7228. [53] 李中华, 巴恒静. 混凝土的抗盐冻性能[J]. 吉林大学学报(工学版), 2009, 39(4): 926-931. LI Z H, BA H J. Freeze-deicing salt resistance of concrete[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(4): 926-931 (in Chinese). [54] 徐 港, 卫 军. 氯盐种类及冻融对混凝土氯离子迁移的影响[J]. 建筑材料学报, 2006, 9(6): 729-734. XU G, WEI J. Effect of salt types and freeze-thaw on chloride diffusion in concrete[J]. Journal of Building Materials, 2006, 9(6): 729-734 (in Chinese). [55] GUO J J, SUN W Q, XU Y Q, et al. Damage mechanism and modeling of concrete in freeze-thaw cycles: a review[J]. Buildings, 2022, 12(9): 1317. [56] 徐存东, 王海若, 陈家豪, 等. 盐冻循环对混凝土力学性能的影响及寿命预测[J]. 水电能源科学, 2023, 41(9): 134-138. XU C D, WANG H R, CHEN J H, et al. Influence of salt freezing cycle on mechanical properties of concrete and its life prediction[J]. Water Resources and Power, 2023, 41(9): 134-138 (in Chinese). [57] 王 会. 冻融与复合盐耦合作用下活化煤矸石粉混凝土劣化规律[J]. 连云港职业技术学院学报, 2023, 36(2): 1-5. WANG H. Deterioration law of activated coal gangue powder concrete under the coupling of freeze-thaw and composite salt[J]. Journal of Lianyungang Technical College, 2023, 36(2): 1-5 (in Chinese). [58] 贡 力, 梁 颖, 宫雪磊, 等. 硫酸盐环境下再生混凝土抗冻耐久性及界面微观结构研究[J]. 应用基础与工程科学学报, 2023, 31(4): 1006-1017. GONG L, LIANG Y, GONG X L, et al. Study on frost resistance durability and interface microstructure of recycled concrete in sulfate environment[J]. Journal of Basic Science and Engineering, 2023, 31(4): 1006-1017 (in Chinese). [59] 杨全兵. 盐及融雪剂种类对混凝土剥蚀破坏影响的研究[J]. 建筑材料学报, 2006, 9(4): 464-467. YANG Q B. Effects of salt and snow-thawing agent types on salt-scaling damage of concrete[J]. Journal of Building Materials, 2006, 9(4): 464-467 (in Chinese). [60] 杨全兵. 混凝土盐冻破坏机理(Ⅰ): 毛细管饱水度和结冰压[J]. 建筑材料学报, 2007, 10(5): 522-527. YANG Q B. Mechanisms of deicer-frost scaling of concrete(Ⅰ): capillary-uptake degree of saturation and ice-formation pressure[J]. Journal of Building Materials, 2007, 10(5): 522-527 (in Chinese). [61] 郭寅川, 申爱琴, 郑盼飞, 等. 高寒地区桥面板水泥混凝土抗盐冻性能研究[J]. 公路交通科技, 2019, 36(3): 73-79. GUO Y C, SHEN A Q, ZHENG P F, et al. Study on salt-freeze resistance of bridge deck concrete in alpine region[J]. Journal of Highway and Transportation Research and Development, 2019, 36(3): 73-79 (in Chinese). [62] 秦 菱, 武 卫, 王思扬, 等. 基于孔结构分析的引气混凝土盐冻耐久性研究[J]. 混凝土与水泥制品, 2015(10): 27-31. QIN L, WU W, WANG S Y, et al. Study on salt-frost durability of air-entrained concrete based on pole structure analysis[J]. China Concrete and Cement Products, 2015(10): 27-31 (in Chinese). [63] TANG M, TIAN Y, MU X B, et al. The pore fractal characteristics of concrete materials under salt freezing conditions in cold area[J]. Advanced Materials Research, 2011, 233/234/235: 2522-2527. [64] 朱翔琛, 张云升, 刘志勇, 等. 基于核磁共振技术的硫酸盐冻融下机制骨料混凝土孔结构演变规律研究[J]. 复合材料学报, 2023: 1-14. ZHU X C, ZHANG Y S, LIU Z Y, et al. Study on the evolution of pore structure of manufactured aggregate concrete under sulfate freeze-thaw based on nuclear magnetic resonance technology[J]. Acta Materiae Compositae Sinica, 2023: 1-14 (in Chinese). [65] NICULA L M, CORBU O, ARDELEAN I, et al. Freeze-thaw effect on road concrete containing blast furnace slag: NMR relaxometry investigations[J]. Materials, 2021, 14(12): 3288. [66] ZHANG S Y, ZHENG S Q, WANG E, et al. Grey model study on strength and pore structure of self-compacting concrete with different aggregates based on NMR[J]. Journal of Building Engineering, 2023, 64: 105560. [67] 闫西乐, 张 萍, 秦鸿根, 等. 混凝土抗盐冻性能试验[J]. 水利水电科技进展, 2016, 36(2): 42-45+94. YAN X L, ZHANG P, QIN H G, et al. Experimental study of frost-salt resistance of concrete[J]. Advances in Science and Technology of Water Resources, 2016, 36(2): 42-45+94 (in Chinese). [68] 巴恒静, 李中华, 关 辉. 混凝土抗盐冻性能影响因素的研究[J]. 混凝土, 2008(11): 1-3. BA H J, LI Z H, GUAN H. Influencing factors of the deicer-salt resistance of the concrete[J]. Concrete, 2008(11): 1-3 (in Chinese). [69] 殷素红, 郭高峰, 张二猛, 等. 弯曲荷载下腐蚀介质SO2-4、Cl-在混凝土中的分布规律[J]. 华南理工大学学报(自然科学版), 2013, 41(6): 133-139. YIN S H, GUO G F, ZHANG E M, et al. Distribution regularity of corrosive media SO2-4 and Cl- in concrete under flexural load[J]. Journal of South China University of Technology (Natural Science Edition), 2013, 41(6): 133-139 (in Chinese). [70] 於德美, 陈拴发, 关博文, 等. 荷载作用下道路混凝土硫酸盐腐蚀特性研究[J]. 武汉理工大学学报, 2014, 36(5): 43-48. YU D M, CHEN S F, GUAN B W, et al. Research on sulfate corrosion of road concrete under load[J]. Journal of Wuhan University of Technology, 2014, 36(5): 43-48 (in Chinese). [71] 赵顺波, 杨晓明. 受侵蚀混凝土内硫酸根离子扩散及分布规律试验研究[J]. 中国港湾建设, 2009, 29(3): 26-29+53. ZHAO S B, YANG X M. Experimental study on regularity of sulfate-ion diffusion and distribution in concrete attacked by sulfate[J]. China Harbour Engineering, 2009, 29(3): 26-29+53 (in Chinese). [72] 孙 伟, 蒋金洋, 王 晶, 等. 弯曲疲劳载荷作用下HPC和HPFRCC抗氯离子扩散性能研究[J]. 中国材料进展, 2009, 28(11): 19-25+53. SUN W, JIANG J Y, WANG J, et al. Resistance to chloride ion diffusion of HPC and HPFRCC under bending fatigue load[J]. Materials China, 2009, 28(11): 19-25+53 (in Chinese). [73] JIN Z Q, SUN W, JIANG J Y, et al. Damage of concrete attacked by sulfate and sustained loading[J]. Journal of Southeast University (English Edition), 2008, 24(1): 69-73. [74] 关博文. 交变荷载与硫酸盐腐蚀作用下水泥混凝土疲劳损伤机制[D]. 西安: 长安大学, 2012. GUAN B W. Study on the fatigue damage of cement concrete subjected to sulfate corrosion and alternating stresses[D]. Xi’an: Chang’an University, 2012 (in Chinese). [75] 陈拴发, 李华平, 李祖仲, 等. 交变荷载对硫酸盐侵蚀混凝土速率影响研究[J]. 武汉理工大学学报, 2011, 33(6): 44-49. CHEN S F, LI H P, LI Z Z, et al. Study on the influence of alternation loading to the speed of sulfate corrosion concretes[J]. Journal of Wuhan University of Technology, 2011, 33(6): 44-49 (in Chinese). [76] YU D M, GUAN B W, HE R, et al. Sulfate attack of Portland cement concrete under dynamic flexural loading: a coupling function[J]. Construction and Building Materials, 2016, 115: 478-485. [77] 张 楠. 疲劳荷载与冻融循环多次交互作用下混凝土损伤特性试验研究[D]. 烟台: 烟台大学, 2018. ZHANG N. Experimental study on the damage characteristics of concrete under the multiple interactions of fatigue loading and freezing-thawing cycles[D]. Yantai: Yantai University, 2018 (in Chinese). [78] LI Z N, SHEN A, LONG H, et al. Dynamic deterioration of strength, durability, and microstructure of pavement concrete under fatigue load[J]. Construction and Building Materials, 2021, 306: 124912. [79] 李海波, 逯静洲, 田飞翔, 等. 冻融和疲劳作用下约束混凝土抗压性能试验[J]. 烟台大学学报(自然科学与工程版), 2021, 34(4): 487-493. LI H B, LU J Z, TIAN F X, et al. Compressive resistance test of confined concrete under freeze-thaw and fatigue loading[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2021, 34(4): 487-493 (in Chinese). [80] XUE G, ZHU H J, XU S, et al. Fatigue performance and fatigue equation of crumb rubber concrete under freeze-thaw cycles[J]. International Journal of Fatigue, 2023, 168: 107456. [81] 司秀勇, 高青宇, 潘慧敏, 等. 环境和疲劳荷载作用下开裂混凝土寿命预测研究进展[J]. 硅酸盐通报, 2024, 43(1): 1-15. SI X Y, GAO Q Y, PAN H M, et al. Research progress on life prediction of cracked concrete under environment and fatigue load[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(1): 1-15 (in Chinese). [82] 邹 俊. 荷载与腐蚀冻融耦合作用下再生混凝土耐久性能研究[D]. 南昌: 南昌大学, 2017. ZOU J. Study on the durability of recycled concrete under the coupling action of load and corrosion and freeze-thaw[D].Nanchang: Nanchang University, 2017 (in Chinese). [83] 雷 斌, 李召行, 邹 俊, 等. 荷载与腐蚀冻融耦合作用下再生混凝土耐久性能试验[J]. 农业工程学报, 2018, 34(20): 169-174. LEI B, LI Z H, ZOU J, et al. Experiment on durability of recycled concrete under coupling multi-factors of load and corrosion freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 169-174 (in Chinese). [84] 刘华健. 荷载-腐蚀冻融耦合作用下混杂纤维对再生混凝土耐久性能的影响[D]. 南昌: 南昌大学, 2020. LIU H J. The effect of hybrid fiber on the durability of recycled concrete under the coupling action of loading and corrosion freeze-thaw[D].Nanchang: Nanchang University, 2020 (in Chinese). [85] DIAO B, SUN Y, CHENG S H, et al. Effects of mixed corrosion, freeze-thaw cycles, and persistent loads on behavior of reinforced concrete beams[J]. Journal of Cold Regions Engineering, 2011, 25(1): 37-52. [86] 王阵地. 多因素耦合作用下混凝土性能劣化的评价及研究[D]. 北京: 中国建筑材料科学研究总院, 2010. WANG Z D. Research and evaluation on the deterioration of concrete subject to multi-factor[D]. Beijing: China Building Materials Research Institute, 2010 (in Chinese). [87] 于子浩. 持压荷载与盐冻作用下再生混凝土劣化与介质传输性能研究[D]. 青岛: 青岛理工大学, 2022. YU Z H. Study on the damage degradation and mass transfer of recycled concrete subjected to loading and salt freezing-thaw cycles[D]. Qingdao: Qingdao Tehcnology University, 2022 (in Chinese). [88] 楚建勋, 贺建国, 孙 勋. 高浓度盐侵蚀与冻融耦合作用下混凝土宏微观性能劣化规律研究[J]. 交通科技, 2023(6): 129-132. CHU J X, HE J G, SUN X. Study on the deterioration of macro and micro properties of concrete under the coupling of high concentration salt erosion and freeze-thaw[J]. Transportation Science & Technology, 2023(6): 129-132 (in Chinese). [89] 王 天. 柴达木盆地冻融、盐蚀环境下混凝土腐蚀机理及耐久性研究[J]. 铁道勘察, 2021, 47(2): 81-86. WANG T. Study on corrosion mechanism and durability of concrete subjected to freeze-thaw and salt erosion Qaidam Basin[J]. Railway Investigation and Surveying, 2021, 47(2): 81-86 (in Chinese). [90] 曹 银, 王 玲, 王振地, 等. 弯拉荷载-冻融循环-氯盐侵蚀作用下混凝土的劣化[J]. 建筑材料学报, 2016, 19(5): 821-825. CAO Y, WANG L, WANG Z D, et al. Deterioration of concrete caused by freeze-thaw cycles combined with chloride attack under flexural load[J]. Journal of Building Materials, 2016, 19(5): 821-825 (in Chinese). [91] 王 玲, 吴 浩, 管学茂, 等. 应力-化学介质-冻融循环协同作用下水泥基材料失效机理及寿命预测的研究[J]. 中国材料进展, 2010, 29(9): 25-33. WANG L, WU H, GUAN X M, et al. Research on failure mechanism and service life prediction of high performance cementitious materials under the synergistic effect of stress, chemical medium and freezing-thawing cycle[J]. Materials China, 2010, 29(9): 25-33 (in Chinese). [92] WANG Y R, CAO Y B, ZHANG P, et al. Water absorption and chloride diffusivity of concrete under the coupling effect of uniaxial compressive load and freeze-thaw cycles[J]. Construction and Building Materials, 2019, 209: 566-576. [93] QIAO C Y, SURANENI P, WEISS J. Flexural strength reduction of cement pastes exposed to CaCl2 solutions[J]. Cement and Concrete Composites, 2018, 86: 297-305. [94] FARNAM Y, WASHINGTON T, WEISS J. The influence of calcium chloride salt solution on the transport properties of cementitious materials[J]. Advances in Civil Engineering, 2015, 2015: 929864. [95] PETERSON K, JULIO-BETANCOURT G, SUTTER L, et al. Observations of chloride ingress and calcium oxychloride formation in laboratory concrete and mortar at 5 ℃[J]. Cement and Concrete Research, 2013, 45: 79-90. [96] FOY C, PIGEON M, BANTHIA N. Freeze-thaw durability and deicer salt scaling resistance of a 0, 25 water-cement ratio concrete[J]. Cement and Concrete Research, 1988, 18(4): 604-614. [97] 慕 儒. 冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D]. 南京: 东南大学, 2000. MU R. Durability and service life prediction of concrete subjected to the combined action of freezing-thawing, sustained external flexural stress and salt solution[D]. Nanjing: Southeast University, 2000 (in Chinese). [98] 陈继超, 李玉香, 朱晓燕, 等. 除冰剂对机场跑道混凝土抗冻性能影响[J]. 混凝土, 2015(2): 150-154. CHEN J C, LI Y X, ZHU X Y, et al. Effects of deicing agent on freezing resistance of airfield pavement concrete[J]. Concrete, 2015(2): 150-154 (in Chinese). [99] 朱方之, 赵铁军, 姜福香, 等. 荷载损伤后混凝土劣化机理和试验研究[J]. 工业建筑, 2012, 42(12): 67-71+95. ZHU F Z, ZHAO T J, JIANG F X, et al. Experimental study and analysis on deterioration mechanism of damaged concrete induced by mechanical load[J]. Industrial Construction, 2012, 42(12): 67-71+95 (in Chinese). [100] SOROUSHIAN P, ELZAFRANEY M. Damage effects on concrete performance and microstructure[J]. Cement and Concrete Composites, 2004, 26(7): 853-859. [101] 夏冬桃, 冯晨潞, 郑 挚, 等. 盐-冻融循环耦合作用下混杂纤维混凝土盐冻损伤模型[J]. 武汉大学学报(工学版), 2024, 57(1): 55-63. XIA D T, FENG C L, ZHENG Z, et al. Salt-frost damage model of hybrid fiber reinforced concrete under the coupling action of salt-freeze-thaw cycles[J]. Engineering Journal of Wuhan University, 2024, 57(1): 55-63 (in Chinese). [102] 邢明亮, 关博文, 陈拴发, 等. 硫酸盐腐蚀与疲劳荷载联合作用下混凝土劣化特性[J]. 建筑材料学报, 2013, 16(2): 249-254. XING M L, GUAN B W, CHEN S F, et al. Deterioration characteristics of concrete under sulfate erosion and fatigue load[J]. Journal of Building Materials, 2013, 16(2): 249-254 (in Chinese). [103] 徐善华, 秦广冲, 李钰茹. 单调荷载下冻融混凝土应力-应变关系试验研究[J]. 混凝土, 2014(12): 4-6+10. XU S H, QIN G C, LI Y R. Study on stress-strain relationship for freezing-thawing concrete under monotonic loading[J]. Concrete, 2014(12): 4-6+10 (in Chinese). [104] 商怀帅, 宋玉普, 覃丽坤, 等. 冻融循环后在三向受压荷载下混凝土性能的试验研究[J]. 水利学报, 2006, 37(7): 874-879+885. SHANG H S, SONG Y P, QIN L K, et al. Experimental study on properties of concrete under triaxial compression after freez-thaw cycles[J]. Journal of Hydraulic Engineering, 2006, 37(7): 874-879+885 (in Chinese). [105] 郭寅川, 申爱琴, 何天钦, 等. 疲劳荷载和冻融循环耦合作用下路面混凝土微裂缝扩展行为[J]. 交通运输工程学报, 2016, 16(5): 1-9. GUO Y C, SHEN A Q, HE T Q, et al. Micro-crack propagation behavior of pavement concrete subjected to coupling effect of fatigue load and freezing-thawing cycles[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 1-9 (in Chinese). [106] 郭寅川, 申爱琴, 何天钦, 等. 疲劳荷载与冻融循环耦合作用下季冻区路面水泥混凝土孔结构研究[J]. 中国公路学报, 2016, 29(8): 29-35. GUO Y C, SHEN A Q, HE T Q, et al. Pore structure research on pavement cement concrete subjected to coupling effect of fatigue load and cyclic freeze-thaw in seasonally frozen ground region[J]. China Journal of Highway and Transport, 2016, 29(8): 29-35 (in Chinese). [107] WANG Z D, ZENG Q, WU Y K, et al. Relative humidity and deterioration of concrete under freeze-thaw load[J]. Construction and Building Materials, 2014, 62: 18-27. [108] LU J Z, ZHU K F, TIAN L, et al. Dynamic compressive strength of concrete damaged by fatigue loading and freeze-thaw cycling[J]. Construction and Building Materials, 2017, 152: 847-855. [109] 田立宗, 逯静洲, 朱孔峰, 等. 冻融循环与疲劳荷载作用下混凝土损伤研究[J]. 长江科学院院报, 2018, 35(2): 140-144+150. TIAN L Z, LU J Z, ZHU K F, et al. Damage of concrete under freeze-thaw cycles and fatigue load[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(2): 140-144+150 (in Chinese). [110] 张益多, 刘荣桂, 陈 好, 等. 冻融和疲劳对预应力受弯构件损伤的影响[J]. 力学与实践, 2011, 33(6): 55-58+34. ZHANG Y D, LIU R G, CHEN H, et al. The influence of freeze-thawing and fatigue load on the damage of prestressed concrete beams[J]. Mechanics in Engineering, 2011, 33(6): 55-58+34 (in Chinese). [111] WANG B X, WANG F, WANG Q. Damage constitutive models of concrete under the coupling action of freeze-thaw cycles and load based on Lemaitre assumption[J]. Construction and Building Materials, 2018, 173: 332-341. [112] 余红发, 慕 儒, 孙 伟, 等. 弯曲荷载、化学腐蚀和碳化作用及其复合对混凝土抗冻性的影响[J]. 硅酸盐学报, 2005, 33(4): 492-499. YU H F, MU R, SUN W, et al. Influence of bending load, chemical corrosion, carbonization and their combination on frost resistance of concrete[J]. Journal of the Chinese Ceramic Society, 2005, 33(4): 492-499 (in Chinese). [113] 何天钦. 季冻区交通荷载与冻融环境交互作用下路面水泥混凝土损伤研究[D]. 西安: 长安大学, 2017. HE T Q. Study on the damage of pavement cement concrete under the interactive effect of traffic load and freeze-thaw environment in seasonal frozen region[D]. Xi’an: Chang’an University, 2017 (in Chinese). [114] 杨冬鹏. 压应力和聚丙烯纤维对混凝土抗冻性能的影响[J]. 建筑施工, 2016, 38(9): 1269-1271+1274. YANG D P. Impact of compressive stress and polypropylene fiber on concrete frost resistance performance[J]. Building Construction, 2016, 38(9): 1269-1271+1274 (in Chinese). [115] 田 俊, 王文炜. 盐冻融-荷载耦合作用下高性能混凝土试验及损伤模型研究[J]. 混凝土, 2015(4): 60-64. TIAN J, WANG W W. Experimental study and predicted model of high-performance concrete under combined actions of salt freezing-thawing and load[J]. Concrete, 2015(4): 60-64 (in Chinese). [116] 朱蓓蓉, 杨全兵, 黄士元. 除冰盐对混凝土化学侵蚀机理研究[J]. 低温建筑技术, 2000, 22(1): 3-6. ZHU B R, YANG Q B, HUANG S Y. Mechanism of chemical attack of the deicer on concrete[J]. Low Temperature Architecture Technology, 2000, 22(1): 3-6 (in Chinese). [117] 王 玲, 田稳苓, 焦晓辉. 混凝土受除冰盐侵蚀破坏机理及防治措施研究[J]. 低温建筑技术, 2001, 23(3): 11-13. WANG L, TIAN W L, JIAO X H. Research on countermeasures and deterioration mechanism of concrete eroded by deicing salt[J]. Low Temperature Architecture Technology, 2001, 23(3): 11-13 (in Chinese). [118] OLSEN M P J. Mathematical modeling of the freezing process of concrete and aggregates[J]. Cement and Concrete Research, 1984, 14(1): 113-122. [119] ZUBER B, MARCHAND J. Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria[J]. Materials and Structures, 2004, 37(4): 257-270. [120] JIANG W Q, SHEN X H, XIA J, et al. A numerical study on chloride diffusion in freeze-thaw affected concrete[J]. Construction and Building Materials, 2018, 179: 553-565. [121] ÇOPUROĞLU O, SCHLANGEN E. Modeling of frost salt scaling[J]. Cement and Concrete Research, 2008, 38(1): 27-39. [122] LUCERO C L, BENTZ D P, HUSSEY D S, et al. Using neutron radiography to quantify water transport and the degree of saturation in entrained air cement based mortar[J]. Physics Procedia, 2015, 69: 542-550. [123] SUN X, FARAONE A, DAI Q L, et al. A new approach of quantitatively analyzing water states by neutron scattering in hardened cement paste[J]. Materials Characterization, 2018, 136: 134-143. [124] LØLAND K E. Continuous damage model for load-response estimation of concrete[J]. Cement and Concrete Research, 1980, 10(3): 395-402. [125] MAZARS J, PIJAUDIER-CABOT G. Continuum damage theory: application to concrete[J]. Journal of Engineering Mechanics, 1989, 115(2): 345-365. [126] 孙 伟, 严捍东, 严 安, 等. 冻融和荷载共同作用下混凝土损伤和抑制过程及其损伤统计模型的建立[C]//第五届全国混凝土耐久性学术交流会论文集. 大连:中国土木工程学会, 2000. SUN W, YAN H D, YAN A, et.al. The damage and inhibition process of concrete under the combined action of freeze-thaw and load and the establishment of damage statistical model[C]// Proceedings of the Fifth National Academic Exchange Conference on Concrete Durability. Dalian: China Civil Engineering Society, 2000 (in Chinese). [127] 张 峰, 李术才, 李守凯. 混凝土随机冻融损伤三维预测模型[J]. 土木建筑与环境工程, 2011, 33(1): 31-35+134. ZHANG F, LI S C, LI S K. Three-dimensional random damage prediction model of concrete caused by freeze-thaw[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(1): 31-35+134 (in Chinese). [128] 刘荣桂, 付 凯, 颜庭成, 等. 预应力混凝土结构在冻融损伤条件下的疲劳寿命预测模型研究[J]. 建筑结构学报, 2009, 30(3): 79-86. LIU R G, FU K, YAN T C, et al. Durability life prediction of prestressed concrete structures in an erosive environment with fatigue subjoining freezing-thawing circle[J]. Journal of Building Structures, 2009, 30(3): 79-86 (in Chinese). [129] 周胜波, 龚文剑, 申爱琴. 荷载低温干燥条件下路面混凝土强度损伤及寿命预测模型[J]. 公路交通科技, 2016, 33(7): 35-39. ZHOU S B, GONG W J, SHEN A Q. A strength damage and life prediction model of pavement cement concrete under loading, low temperature and drying condition[J]. Journal of Highway and Transportation Research and Development, 2016, 33(7): 35-39 (in Chinese). [130] 严佳川, 邹超英. 冻融循环作用下混凝土材料寿命评估方法[J]. 哈尔滨工业大学学报, 2011, 43(6): 11-15. YAN J C, ZOU C Y. Evaluation method for the service life of concrete under the freeze-thaw action[J]. Journal of Harbin Institute of Technology, 2011, 43(6): 11-15 (in Chinese). |
[1] | SUN Jiaqi, LIU Xi, WANG Chuanlin, SU Zhiqi, LU Xin, MAI Jingmin. Performance of Silane Coupling Agent Modified Polypropylene Fiber Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2355-2362. |
[2] | LYU Yang, FAN Fulong, WU Yuanshuai, ZHU Yanchao, ZHANG Chengshan, LI Xiangguo. Internal Curing Properties of Acrylamide Type SAP Loaded with Nano Silica [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2393-2403. |
[3] | LI Weihong, GUO Wenbin, GUO Xiangbing, CHEN Xiao, ZHOU Mingkai. Composition Design and Application of CFB Ash-Slag Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2530-2538. |
[4] | LIU Rui, LIU Ze, ZHAO Lijie, ZHANG Shuai, WANG Dongmin. Mixture Ratio of Lithium Slag-Based Controllable Low Strength Materials Based on Orthogonal Experiment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2548-2555. |
[5] | YIN Yuan, LIN Kang, ZENG Weixin, CHENG Shufan. Experimental Study on Road Performance of Weak Alkali-Activated Phosphorus Slag-Cement Composite Filler [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2602-2611. |
[6] | WANG Jindong, LUO Mengting, LU Qingrui, WANG Qiuzhe, LI Dongwei. Strength Characteristics and Micro Mechanism of Straw-Polyvinyl Alcohol Reinforced Silty Clay under Dry-Wet Cycle [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2630-2639. |
[7] | LI Wei, ZHANG Ge, CUI Congcong, BAO Jianxun, GUO Conghui. Research Progress of Additive Manufacturing SiC Ceramic Mirror [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2661-2671. |
[8] | WANG Xiaoyan, YE Wuping, CAO Liqiang. Influence and Mechanism Analysis of Re-Dispersible Latex Powder on Performance of Steel Structure Interface Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 1999-2004. |
[9] | WANG Bo, QIAN Jun, LUO Jie, XU Yi, CHU Hongqiang, JIANG Linhua. Superhydrophobic Biomimetic Construction and Microscopic Mechanism of Hydraulic Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2031-2038. |
[10] | ZHENG Biao, LI Shunkai, LI Yulin, SU Youliang, LIN Yian. Effect of Magnetized Water on Mechanical Properties and Durability of Marine Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2039-2046. |
[11] | XU Cundong, WANG Zhihang, CHEN Jiahao, LI Zhun, WANG Hairuo, XU Hui. Life Prediction of Polypropylene Fiber Reinforced Concrete under Salt-Freeze Erosion Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2111-2120. |
[12] | WANG Wei, LAI Zengcheng, TAN Peng, JU Zhicheng, YANG Haicheng, FAN Zhihong. Preparation and Properties of Chloride Resistant Concrete with Manufactured Sand and Extra Fine Sand [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2121-2129. |
[13] | PENG Lijuan, KE Guojun, SONG Baixing, JIANG Tian, WANG Wenqing. Fluidity and Mechanical Properties of Waste Glass Powder-Metakaolin Geopolymer Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2168-2175. |
[14] | ZHOU Mingkai, WANG Xiao, GAO Peng, WANG Yuqiang. Preparation of High Strength Gypsum Product with Wet-Base α-Hemihydrous Gypsum [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2186-2197. |
[15] | XIAO Jianzhuang, LYU Zhenyuan, LIU Haoran. A Fundamental Study Progress on Reinforcement Enhancement of 3D Printed Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1545-1556. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||