[1] HE Q F, SUN K, SHI Z C, et al. Polymer dielectrics for capacitive energy storage: from theories, materials to industrial capacitors[J]. Materials Today, 2023, 68: 298-333. [2] WANG Z P, KANG R R, ZHANG L X, et al. Ultrahigh energy-storage capacity achieved in (Bi0.5Na0.5)TiO3-based high-entropy dielectric capacitors with linear-like polarization response[J]. Chemical Engineering Journal, 2023, 474: 145506. [3] RITAMÄKI M, RYTÖLUOTO I, LAHTI K, et al. Large-area approach to evaluate DC electro-thermal ageing behavior of BOPP thin films for capacitor insulation systems[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 826-836. [4] GUO X Y, YUAN X F, WANG W W, et al. Multilayer structured CaBi4Ti4O15 thin film capacitor with excellent energy storage performance[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(4): 337. [5] PAN H, ZENG Y, SHEN Y, et al. BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance[J]. Journal of Materials Chemistry A, 2017, 5(12): 5920-5926. [6] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582. [7] PAN Z B, WANG P, HOU X, et al. Fatigue-free aurivillius phase ferroelectric thin films with ultrahigh energy storage performance[J]. Advanced Energy Materials, 2020, 10(31): 2001536. [8] PAN H, MA J, MA J, et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering[J]. Nature Communications, 2018, 9: 1813. [9] ZHANG Y L, LI W L, CAO W P, et al. Mn doping to enhance energy storage performance of lead-free 0. 7NBT-0. 3ST thin films with weak oxygen vacancies[J]. Applied Physics Letters, 2017, 110(24): 243901. [10] ZHANG Y L, LI W L, QIAO Y L, et al. 0.6ST-0.4NBT thin film with low level Mn doping as a lead-free ferroelectric capacitor with high energy storage performance[J]. Applied Physics Letters, 2018, 112(9): 093902. [11] LI P, CHEN X Q, WANG F F, et al. Microscopic insight into electric fatigue resistance and thermally stable piezoelectric properties of (K, Na)NbO3-based ceramics[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28772-28779. [12] YANG C H, HU G D, WU W B, et al. Reduced leakage current, enhanced ferroelectric and dielectric properties in (Ce, Fe)-codoped Na0.5Bi0.5TiO3 film[J]. Applied Physics Letters, 2012, 100(2): 022909. [13] HUANG Y H, WANG J J, YANG T N, et al. A thermodynamic potential, energy storage performances, and electrocaloric effects of Ba1-i>xSrxTiO3 single crystals[J]. Applied Physics Letters, 2018, 112(10): 102901. [14] WANG J J, WU P P, MA X Q, et al. Temperature-pressure phase diagram and ferroelectric properties of BaTiO3 single crystal based on a modified Landau potential[J]. Journal of Applied Physics, 2010, 108(11): 114105. [15] TANG Z H, CHEN J Y, YANG B, et al. Energy storage performances regulated by layer selection engineering for doping in multi-layered perovskite relaxor ferroelectric films[J]. Applied Physics Letters, 2019, 114(16): 163901. [16] YANG B B, GUO M Y, TANG X W, et al. Lead-free A2Bi4Ti5O18 thin film capacitors (A=Ba and Sr) with large energy storage density, high efficiency, and excellent thermal stability[J]. Journal of Materials Chemistry C, 2019, 7(7): 1888-1895. [17] YANG B B, GUO M Y, JIN L H, et al. Ultrahigh energy storage in lead-free BiFeO3/Bi3.25La0.75Ti3O12 thin film capacitors by solution processing[J]. Applied Physics Letters, 2018, 112(3): 033904. [18] AL-WREIKAT Y, SERRANO C, SODRÉ J R. Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle[J]. Energy, 2022, 238: 122028. [19] WATSON J, CASTRO G. High-temperature electronics pose design and reliability challenges[J]. Analog Dialogue, 2012, 46(2): 2-27. [20] WATSON J, CASTRO G. A review of high-temperature electronics technology and applications[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9226-9235. [21] HENGST S, LUONG-VAN D M, EVERETT J R, et al. A small, high-efficiency diesel generator for high-altitude use in Antarctica[J]. International Journal of Energy Research, 2009, 34(9): 827-838. |