[1] 姚直书, 程 桦, 居宪博. 深厚冲积层井筒修复内层钢板高强钢纤维混凝土复合井壁研究及应用[J]. 煤炭学报, 2017, 42(9): 2295-2301. YAO Z S, CHENG H, JU X B. Research and application of high strength steel fiber concrete compound shaft lining with inner steel plate in deep alluvium shaft repair[J]. Journal of China Coal Society, 2017, 42(9): 2295-2301 (in Chinese). [2] 张冬梅, 张 鑫. 基于直接拉伸试验的钢纤维混凝土损伤特性研究[J]. 中国公路学报, 2023, 36(4): 146-156. ZHANG D M, ZHANG X. Damage characteristics of steel fiber-reinforced concrete based on direct tensile test[J]. China Journal of Highway and Transport, 2023, 36(4): 146-156 (in Chinese). [3] 蒋金洋, 孙 伟, 张云升, 等. 超高程泵送钢纤维混凝土的抗裂性能[J]. 东南大学学报(自然科学版), 2007, 37(1): 123-127. JIANG J Y, SUN W, ZHANG Y S, et al. Research on cracking resistance performance of super vertical-distance pumped steel fiber concrete[J]. Journal of Southeast University (Natural Science Edition), 2007, 37(1): 123-127 (in Chinese). [4] 孙成访, 谷 倩, 彭少民. 喷射纤维混凝土的性能与应用综述[J]. 混凝土, 2008(8): 101-104+127. SUN C F, GU Q, PENG S M. General introduction of the performance and application of sprayed FRPC[J]. Concrete, 2008(8): 101-104+127 (in Chinese). [5] 杨晓华, 罗 滔, 刘晓剑, 等. 初始缝高比对钢纤维混凝土断裂性能的影响[J]. 硅酸盐通报, 2022, 41(10): 3465-3474. YANG X H, LUO T, LIU X J, et al. Effect of initial notch-to-depth ratio on fracture properties of steel fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3465-3474 (in Chinese). [6] SUN W, CHEN H S, LUO X, et al. The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete[J]. Cement and Concrete Research, 2001, 31(4): 595-601. [7] 王 婧. 高强钢纤维混凝土收缩性能研究[J]. 硅酸盐通报, 2017, 36(8): 2869-2873. WANG J. Experiment study on the shrinkage behavior of high performance steel fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2869-2873 (in Chinese). [8] 张玉新, 付春松. 合成纤维混凝土板早期抗收缩裂缝的试验研究[J]. 混凝土, 2007(3): 52-54. ZHANG Y X, FU C S. An experiment research on early cracking properties of synthetic fiber reinforced concrete[J]. Concrete, 2007(3): 52-54 (in Chinese). [9] 李 明, 申春丽, 刘山洪. 高模量PVA纤维混凝土早期收缩及抗拉试验研究[J]. 重庆交通大学学报(自然科学版), 2012, 31(5): 953-956+961. LI M, SHEN C L, LIU S H. Experimental study on early-age shrinkage and tensile strength of concrete with high modulus PVA fiber[J]. Journal of Chongqing Jiaotong University (Natural Science), 2012, 31(5): 953-956+961 (in Chinese). [10] 江朝华, 栾智勇, 张伟伟, 等. 非晶合金纤维特性及其增强混凝土研究综述[J]. 重庆交通大学学报(自然科学版), 2017, 36(5): 45-50. JIANG C H, LUAN Z Y, ZHANG W W, et al. Literature review on the performance of amorphous alloy fiber and its application in reinforced concrete[J]. Journal of Chongqing Jiaotong University (Natural Science), 2017, 36(5): 45-50 (in Chinese). [11] CHOI S J, HONG B T, LEE S J, et al. Shrinkage and corrosion resistance of amorphous metallic-fiber-reinforced cement composites[J]. Composite Structures, 2014, 107: 537-543. [12] WU Z W, LU Z C, NI X J, et al. Effect of heat treatment on corrosion behaviour of amorphous metal fibers[J]. Journal of Iron and Steel Research International, 2014, 21(11): 1030-1034. [13] 汪 洁. 铁基非晶合金纤维混凝土轴压力学性能试验研究[D]. 沈阳: 沈阳工业大学, 2021. WANG J. Experimental study on axial compression mechanical properties of Fe-based amorphous alloy fiber reinforced concrete[D]. Shenyang: Shenyang University of Technology, 2021 (in Chinese). [14] 江朝华, 李晓宇, 朱钰文, 等. 一种非晶合金纤维增强混凝土及其制备方法: CN105601193B[P]. 2017-09-29. JIANG C H, LI X Y, ZHU Y W, et al. A method for preparing amorphous alloy fiber reinforced concrete: CN105601193B[P]. 2017-09-29 (in Chinese). [15] PARK P, EL-TAWIL S, PARK S Y, et al. Cracking resistance of fiber reinforced asphalt concrete at -20 ℃[J]. Construction and Building Materials, 2015, 81: 47-57. [16] 李传习, 夏雨航, 王圣杰, 等. 初凝超30 min超早强UHPC制备及其机理[J]. 硅酸盐通报, 2023, 42(5): 1630-1639. LI C X, XIA Y H, WANG S J, et al. Preparation and mechanism of super-early-strength UHPC with initial setting time over 30 min[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1630-1639 (in Chinese). [17] CHEN B, CAI Y B, DING J T, et al. Crack resistance evaluating of HSC based on thermal stress testing[J]. Advanced Materials Research, 2010, 168/169/170: 716-720. [18] 周茗如, 侯红红, 樊乐涛. 高含泥量砂制备混凝土的早期开裂研究[J]. 建筑技术, 2017, 48(1): 35-38. ZHOU M R, HOU H H, FAN L T. Study on high silt sand preparation of early cracking of concrete[J]. Architecture Technology, 2017, 48(1): 35-38 (in Chinese). [19] 陈升平, 王佳雯. 冻融环境下纤维混凝土损伤模型研究[J]. 混凝土, 2017(10): 58-61+67. CHEN S P, WANG J W. Damage model of fiber reinforced concrete under freezing and thawing environment[J]. Concrete, 2017(10): 58-61+67 (in Chinese). [20] 孙家瑛. 纤维混凝土抗冻性能研究[J]. 建筑材料学报, 2013, 16(3): 437-440. SUN J Y. Frost resistance characteristics of fiber concrete[J]. Journal of Building Materials, 2013, 16(3): 437-440 (in Chinese). [21] 肖 琦, 郝 帅, 宁喜亮. 混杂纤维混凝土的抗冻性能试验研究[J]. 混凝土, 2018(7): 54-57. XIAO Q, HAO S, NING X L. Experimental study on frost resistance of hybrid fiber reinforced concrete[J]. Concrete, 2018(7): 54-57 (in Chinese). [22] YAO W, LI J, WU K R. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction[J]. Cement and Concrete Research, 2003, 33(1): 27-30. [23] SONG P S, WU J C, HWANG S, et al. Statistical analysis of impact strength and strength reliability of steel-polypropylene hybrid fiber-reinforced concrete[J]. Construction and Building Materials, 2005, 19(1): 1-9. [24] 赵 晶, 蔡新华, 焦贺军. 混杂纤维对混凝土早期开裂性能的影响[J]. 哈尔滨工业大学学报, 2007, 39(2): 232-234. ZHAO J, CAI X H, JIAO H J. Effect of hybrid fiber on early cracking behavior in concrete[J]. Journal of Harbin Institute of Technology, 2007, 39(2): 232-234 (in Chinese). [25] LIU C, TANG C S, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77-80. [26] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration of Market Supervision and Administration. Standard for test methods of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [27] LI C X, FENG Z, PAN R S, et al. Experimental and numerical investigation on the anchorage zone of prestressed UHPC box-girder bridge[J]. Journal of Bridge Engineering, 2020, 25(6): 04020028. [28] 王秋维, 梁 林, 史庆轩. 混杂钢纤维超高性能混凝土轴拉力学性能及本构模型[J]. 复合材料学报, 2024, 41(1): 383-394. WANG Q W, LIANG L, SHI Q X. Mechanical properties and constitutive model of ultra-high performance concrete with hybrid steel fiber under axial tension[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 383-394 (in Chinese). [29] DU J L, WEI X S, TIAN C. The early-age shrinkage cracking and late-age fracture properties of fiber-reinforced cementitious composites[J]. Construction and Building Materials, 2023, 404: 133214. [30] 梁宁慧, 缪庆旭, 刘新荣, 等. 聚丙烯纤维增强混凝土断裂韧度及软化本构曲线确定[J]. 吉林大学学报(工学版), 2019, 49(4): 1144-1152. LIANG N H, MIAO Q X, LIU X R, et al. Determination of fracture toughness and softening traction-separation law of polypropylene fiber reinforced concrete[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1144-1152 (in Chinese). |