BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (6): 2073-2083.
• Cement and Concrete • Previous Articles Next Articles
LI Luoyin, DONG Shuibo, LIU Haifeng, YONG Wenjie, CHE Jialing
Received:
2023-11-30
Revised:
2024-01-16
Online:
2024-06-15
Published:
2024-06-18
CLC Number:
LI Luoyin, DONG Shuibo, LIU Haifeng, YONG Wenjie, CHE Jialing. Strength Prediction and Ultrasonic Testing of Desert Sand Concrete after High Temperature[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2073-2083.
[1] ZHANG G X, SONG J X, YANG J S, et al. Performance of mortar and concrete made with a fine aggregate of desert sand[J]. Building and Environment, 2006, 41(11): 1478-1481. [2] ZHANG M H, ZHU X Z, SHI J Y, et al. Utilization of desert sand in the production of sustainable cement-based materials: a critical review[J]. Construction and Building Materials, 2022, 327: 127014. [3] LI Y G, ZHANG H M, CHEN S J, et al. Multi-scale study on the durability degradation mechanism of aeolian sand concrete under freeze-thaw conditions[J]. Construction and Building Materials, 2022, 340: 127433. [4] 乔宏霞, 彭 宽, 陈克凡, 等. 陶瓷骨料再生混凝土高温损伤研究[J]. 硅酸盐通报, 2019, 38(9): 2902-2909. QIAO H X, PENG K, CHEN K F, et al. Study on high temperature damage of ceramic aggregate recycled concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9): 2902-2909 (in Chinese). [5] 刘 宁, 刘海峰, 杨 浩, 等. 高温对沙漠砂混凝土抗压强度的影响[J]. 广西大学学报(自然科学版), 2018, 43(4): 1581-1587. LIU N, LIU H F, YANG H, et al. Influence of high temperature on compressive strength of desert sand concrete[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(4): 1581-1587 (in Chinese). [6] 田 帅, 刘海峰, 宋建夏. 高温后高强沙漠砂混凝土力学性能研究[J]. 广西大学学报(自然科学版), 2015, 40(1): 112-120. TIAN S, LIU H F, SONG J X. Research of mechanical properties of high strength desert sand concrete after high temperature[J]. Journal of Guangxi University (Natural Science Edition), 2015, 40(1): 112-120 (in Chinese). [7] 吕剑波, 刘 宁, 刘海峰. 高温后沙漠砂混凝土抗压强度研究[J]. 混凝土, 2017(7): 129-133. LÜ J B, LIU N, LIU H F. Study on the compressive strength of desert sand concrete after elevated temperature[J]. Concrete, 2017(7): 129-133 (in Chinese). [8] 李忠友, 刘元雪, 姚志华. 普通硅酸盐混凝土高温性能劣化分析模型[J]. 防灾减灾工程学报, 2020, 40(2): 229-235. LI Z Y, LIU Y X, YAO Z H. Analysis model on deterioration of ordinary silicate concrete under high temperature[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(2): 229-235 (in Chinese). [9] ELSANADEDY H M. Residual compressive strength of high-strength concrete exposed to elevated temperatures[J]. Advances in Materials Science and Engineering, 2019, 2019: 6039571. [10] 秦尚源, 陈小龙, 刘海峰, 等. 高温后沙漠砂混凝土抗压强度超声检测[J]. 混凝土, 2021(1): 157-160. QIN S Y, CHEN X L, LIU H F, et al. Ultrasonic testing of compressive strength of desert sand concrete after elevated temperature[J]. Concrete, 2021(1): 157-160 (in Chinese). [11] 李 佳, 刘 清, 邓焙元, 等. 基于灰色理论掺风积沙自密实混凝土强度分析与预测[J]. 新疆大学学报(自然科学版)(中英文), 2021, 38(3): 361-376. LI J, LIU Q, DENG B Y, et al. Strength analysis and prediction of self-compacting concrete based on grey theory[J]. Journal of Xinjiang University (Natural Science Edition) (in Chinese and English), 2021, 38(3): 361-376 (in Chinese). [12] 邓聚龙. 灰色预测与决策[M]. 武汉: 华中科技大学出版社, 1988: 22-32. DENG J L. Gray prediction and decision-making[M]. Wuhan: Huazhong University of Science and Technology Press, 1988: 22-32 (in Chinese). [13] 陈东林, 王学志, 王晨晨, 等. 基于NSGM(1,N)模型的RTSF/PVA矿渣混凝土高温后力学性能分析及预测[J]. 防灾减灾工程学报, 2023, 43(6): 1346-1357. CHEN D L, WANG X Z, WANG C C, et al. Analysis and prediction of mechanical properties of RTSF/PVA slag concrete after high temperature based on NSGM(1,N) model[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(6): 1346-1357 (in Chinese). [14] 曾 波, 李树良, 孟 伟. 灰色预测理论及其应用[M]. 北京: 科学出版社, 2020. ZENG B, LI S L, MENG W. Grey prediction theory and its application[M]. Beijing: Science Press, 2020 (in Chinese). [15] 沈金生, 焦轼伦, 李 扬, 等. 高强混凝土超声回弹法地区测强曲线试验研究[J]. 混凝土, 2020(4): 145-147. SHEN J S, JIAO S L, LI Y, et al. Study on high-strength concrete ultrasonic rebound method for regional strength curve test[J]. Concrete, 2020(4): 145-147 (in Chinese). [16] 张显军. 超声回弹综合法评定构件混凝土强度的研究[D]. 哈尔滨: 东北林业大学, 2007. ZHANG X J. Study on evaluation of concrete strength by ultrasonic-rebound combined method[D]. Harbin: Northeast Forestry University, 2007 (in Chinese). [17] 孟宏睿. 高温作用后混凝土力学性能及无损检测的试验研究[D]. 西安: 西安建筑科技大学, 2005. MENG H R. The research of the mechanical performance and inspection technology in No damaging method of fired concrete[D]. Xi’an: Xi’an University of Architecture and Technology, 2005 (in Chinese). [18] 高丹盈, 李 晗. 超声回弹综合法推定纤维纳米混凝土强度及经历高温[J]. 建筑材料学报, 2014, 17(6): 1025-1030. GAO D Y, LI H. Evaluation of compressive strength and the highest exposure temperature of fiber and nanosized materials reinforced concrete by ultrasonic-rebound combined method[J]. Journal of Building Materials, 2014, 17(6): 1025-1030 (in Chinese). [19] 吕天启, 赵国藩, 林志伸, 等. 应用回弹超声方法评定火灾高温静置混凝土抗压强度的试验研究[J]. 混凝土, 2002(8): 21-23+32. LV T Q, ZHAO G F, LIN Z S, et al. The experimental research on applying rebound and ultrasonic to assess compressive strength of concrete subjected to fire and considered standing time effect after fire[J]. Concrete, 2002(8): 21-23+32 (in Chinese). [20] 邓明科, 成 媛, 翁世强, 等. 高温后高延性混凝土的抗压性能及微观结构[J]. 复合材料学报, 2020, 37(4): 985-996. DENG M K, CHENG Y, WENG S Q, et al. Compressive properties and micro-structure of high ductility concrete exposed to elevated temperature[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 985-996 (in Chinese). [21] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [22] 刘海峰, 刘 宁. 高温对沙漠砂混凝土轴心抗压强度和静力受压弹性模量的影响[J]. 硅酸盐通报, 2018, 37(11): 3533-3540. LIU H F, LIU N. Influence of high temperature on the axis compressive strength and elastic modulus of desert sand concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3533-3540 (in Chinese). [23] 中华人民共和国住房和城乡建设部. 回弹法检测混凝土抗压强度技术规程: JGJ/T 23—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for inspecting of concrete compressive strength by rebound method: JGJ/T 23—2011[S]. Beijing: China Construction Industry Press, 2011 (in Chinese). [24] 中国工程建设标准化协会. 超声回弹综合法检测混凝土抗压强度技术规程: T/CECS 02—2020[S]. 北京: 中国计划出版社, 2020. China Engineering Construction Standardization Association. Technical specification for inspecting compressive strength of concrete by ultrasonic- rebound combined method: T/CECS 02—2020[S]. Beijing: China Planning Press, 2020 (in Chinese). [25] LIU H F, LI L Y, TAO R G, et al. Study on the mechanical properties and pore structure of desert sand concrete (DSC) after high temperature[J]. Physics and Chemistry Earth, Parts A/B/C, 2022, 128: 103220. [26] SHEN Y J, PENG C, HAO J S, et al. High temperature resistance of desert sand concrete: strength change and intrinsic mechanism[J]. Construction and Building Materials, 2022, 327: 126948. [27] 张海燕, 袁振生, 闫 佳. 偏高岭土-粉煤灰地聚物混凝土高温后的力学性能研究[J]. 防灾减灾工程学报, 2016, 36(3): 373-379. ZHANG H Y, YUAN Z S, YAN J. Experimental study on mechanical properties of metakaolin-fly ash-based geopolymer concrete after exposure to elevated temperatures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(3): 373-379 (in Chinese). [28] MAO Z H, ZHANG J C, MA Q K, et al. Performance evaluation of fiber-reinforced reactive powder concrete exposed to high temperature combining nondestructive test[J]. Journal of Building Engineering, 2022, 61: 105266. [29] 中国工程建设标准化协会. 火灾后工程结构鉴定标准: T/CECS 252—2019[S]. 北京: 中国建筑工业出版社, 2019. China Engineering Construction Standardization Association. Standard for appraisal of engineering structures after fire: T/CECS 252—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [30] 李 卫, 过镇海. 高温下砼的强度和变形性能试验研究[J]. 建筑结构学报, 1993, 14(1): 8-16. LI W, GUO Z H. Experimental investigation of strength and deformation of concrete at elevated temperature[J]. Journal of Building Structures, 1993, 14(1): 8-16 (in Chinese). [31] 刘思峰. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2017. LIU S F. Grey system theory and its applications[M]. Beijing: Science Press, 2017 (in Chinese). |
[1] | WANG Xianggeng, CHEN Peiyuan, LI Jin, ZHAO Cheng, GU Zhicheng. Effect of Silica Fume Heat-Welded Modified Plastic Particles on Compressive Strength and Microstructure of Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 1975-1982. |
[2] | LIU Yuan, LIU Xiaotong, YANG Anxu, ZHANG Yuanyong, YANG Lin. Effect of Aluminum Sulfate Base Alkali-Free Liquid Accelerating Agent Modified by Fluorine Silicon Slag on Cement Properties [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2005-2011. |
[3] | YANG Shijie, ZHANG Shiping, NIU Longlong, ZHANG Shouwei. Crack Repairability of Cementitious Materials by Superabsorbent Polymers in Different Environmental Solutions [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2012-2021. |
[4] | WANG Bo, QIAN Jun, LUO Jie, XU Yi, CHU Hongqiang, JIANG Linhua. Superhydrophobic Biomimetic Construction and Microscopic Mechanism of Hydraulic Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2031-2038. |
[5] | ZHENG Biao, LI Shunkai, LI Yulin, SU Youliang, LIN Yian. Effect of Magnetized Water on Mechanical Properties and Durability of Marine Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2039-2046. |
[6] | GAN Xueyu, CHEN Shuai, GENG Haining, LI Zonggang, MA Haosen, CHEN Wei, HOU Suo, LI Qiu. Effect of Modified High Concentration Boric Acid Solution on Mechanical and Neutron Shielding Properties of Serpentine Shielded Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2047-2055. |
[7] | XIAN Xuelei, LIN Mengkai, CHEN Tianming, WANG Daning. Straight Shear Test and Finite Element Simulation of UHPC-NC Interface with Reinforcement Planting [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2056-2063. |
[8] | WANG Fajing, WANG Xinjie, ZHU Pinghua, LIU Xiaolin. Influences of Coarse Aggregate Replacement Ratios on High-Temperature Performance of Recycled Concrete with Manufactured Sand [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2084-2092. |
[9] | MA Xinmei, WEN Yong, TIAN Peifeng, LIN Haimeng, SHAO Shuai. Corrosion Effects of Vitamins on Steel Bar in Simulated Pore Solution of Concrete Containing Chlorine [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2093-2101. |
[10] | LIANG Qiuqun, CHEN Xuandong, HU Xiang. Mesoscopic Simulation of Chloride Ion Transport Mechanism in Concrete under Freeze-Thaw Cycles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2102-2110. |
[11] | XU Cundong, WANG Zhihang, CHEN Jiahao, LI Zhun, WANG Hairuo, XU Hui. Life Prediction of Polypropylene Fiber Reinforced Concrete under Salt-Freeze Erosion Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2111-2120. |
[12] | XU Chengxiang, ZHANG Jiaqi. Permeability Resistance Test of Steel-PVA Hybrid Fiber High Performance Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2130-2136. |
[13] | QIAO Xiantao, YU Peng, CHEN Xijian, ZHOU Jiale, ZHANG Lianjie, LI Jianpeng. Cracking Behavior and Fracture Toughness of Concrete Strengthened by Single/Mixed Amorphous Alloy Fiber and Steel Fiber [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2137-2148. |
[14] | ZHENG Jianlan, WANG Yasi, YE Yan. Influence of Undisturbed Sea Sand on Mechanical Properties of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2149-2156. |
[15] | CHENG Huan, LI Huajian, HUANG Fali, WANG Zhen, YI Zhonglai. Adsorption Characteristics of Recycled Sand Derived from Waste Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2198-2205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||