[1] 修建得, 金祖权, 李 宁, 等. 海洋盐雾环境下混凝土中氯离子传输研究进展[J]. 硅酸盐通报, 2023, 42(3): 771-785. XIU J D, JIN Z Q, LI N, et al. Progress of chloride ion transport in concrete under marine salt spray environment [J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 771-785 (in Chinese). [2] 徐文胜, 吴贤国, 冯宗宝, 等. 复杂环境多因素耦合作用下混凝土耐久性能劣化分析[J]. 现代隧道技术, 2022, 59(6): 239-249. XU W S, WU X G, FENG Z B, et al. Analysis of deterioration of concrete durability performance under multi-factor coupling in complex environment [J]. Modern Tunnelling Technology, 2022, 59(6): 239-249 (in Chinese). [3] 曹雁峰. 冻融-硫酸盐干湿侵蚀复合作用下混凝土的劣化机制与寿命预测[D]. 武汉: 武汉大学, 2019. CAO Y F. Deterioration mechanism and life prediction of concrete under freeze-thaw-sulfate dry and wet erosion composite[D]. Wuhan: Wuhan University, 2019 (in Chinese). [4] 彭泽川, 周 扬, 陈鲁川, 等. 超硫水泥混凝土抗盐冻性能及提升研究[J]. 硅酸盐通报, 2022, 41(2): 415-424. PENG Z C, ZHOU Y, CHEN L C, et al. Study on salt freezing resistance and enhancement of supersulfur cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 415-424 (in Chinese). [5] LI Q, YANG K, YANG C H. An alternative admixture to reduce sorptivity of alkali-activated slag cement by optimising pore structure and introducing hydrophobic film[J]. Cement and Concrete Composites, 2019, 95: 183-192. [6] MA Z M, ZHU F Z, ZHAO T. Effects of surface modification of silane coupling agent on the properties of concrete with freeze-thaw damage[J]. KSCE Journal of Civil Engineering, 2018, 22(2): 657-669. [7] 叶金兴. 具有荷叶效应的超疏水纺织物[J]. 现代纺织技术, 2010, 18(2): 52-54. YE J X. Superhydrophobic textiles with lotus leaf effect [J]. Advanced Textile Technology, 2010, 18(2): 52-54 (in Chinese). [8] 田为军, 张兴旺, 王骥月, 等. 水黾多腿并排表面的疏水性能[J]. 高等学校化学学报, 2014, 35(8): 1726-1730. TIAN W J, ZHANG X W, WANG J Y, et al. Surface properties of hydrophobic side by side water strider legs[J]. Chemical Journal of Chinese Universities, 2014, 35(8): 1726-1730 (in Chinese). [9] 江 雷. 从自然到仿生的超疏水纳米界面材料[J]. 新材料产业, 2004(3): 60-65. JIANG L. From natural to biomimetic superhydrophobic nanofacial materials[J]. New Materials Industry, 2004(3): 60-65 (in Chinese). [10] 江 雷. 二元协同纳米界面材料的设计和研制[J]. 新材料产业, 2001(1): 14-15. JIANG L. Design and development of binary collaborative nanointerface materials[J]. Advanced Materials Industry, 2001(1): 14-15 (in Chinese). [11] HUSNI H, NAZARI M R, YEE H M, et al. Superhydrophobic rice husk ash coating on concrete[J]. Construction and Building Materials, 2017, 144: 385-391. [12] HORGNIES M, CHEN J J. Superhydrophobic concrete surfaces with integrated microtexture[J]. Cement and Concrete Composites, 2014, 52: 81-90. [13] 韩正金. 高强度超疏水混凝土制备及其性能研究[D]. 大连: 大连理工大学, 2017. HAN Z J. Research on the preparation of high-strength superhydrophobic concrete and its performance[D]. Dalian: Dalian University of Technology, 2017 (in Chinese). [14] WANG F J, LEI S, OU J F, et al. Effect of PDMS on the waterproofing performance and corrosion resistance of cement mortar[J]. Applied Surface Science, 2020, 507: 145016. [15] MUZENSKI S, FLORES-VIVIAN I, SOBOLEV K. Durability of superhydrophobic engineered cementitious composites[J]. Construction and Building Materials, 2015, 81: 291-297. [16] 梁永贤. 硅烷偶联剂改性TiO2/聚丙烯酸树脂复合材料的制备及其复鞣性能[J]. 皮革与化工, 2021, 38(2): 1-9. LIANG Y X. Preparation and retanning performance of silane coupling agent modified TiO2/polyacrylic resin composite[J]. Leather and Chemicals, 2021, 38(2): 1-9 (in Chinese). [17] 蒙绍强. 纳米材料对水泥水化影响机理的研究[D]. 广州: 广州大学, 2022. MENG S Q. Research on the mechanism of the effect of nanomaterials on cement hydration [D]. Guangzhou: Guangzhou University, 2022 (in Chinese). [18] 李雪萍. 碱矿渣混凝土强度及流动性研究[J]. 河南科学, 2019, 37(9): 1422-1426. LI X P. Strength and fluidity of alkali slag concrete[J]. Henan Science, 2019, 37(9): 1422-1426 (in Chinese). [19] 胡小云. 新型偶联剂改良超疏水混凝土工程性能研究[J]. 水利技术监督, 2022, 30(4): 194-195+234. HU X Y. Study on engineering performance of super hydrophobic concrete improved by new coupling agent[J]. Technical Supervision in Water Resources, 2022, 30(4): 194-195+234 (in Chinese). [20] 鲁浈浈, 何 杨, 王 杰, 等. 环氧树脂/SiO2涂层混凝土表面主动抗凝冰性及除冰性能研究[J]. 表面技术, 2020, 49(10): 169-175. LU Z Z, HE Y, WANG J, et al. Initiative anti-icing performance and deicing ability of epoxy/SiO2 coating concrete surface[J]. Surface Technology, 2020, 49(10): 169-175 (in Chinese). [21] SHE W, ZHENG Z H, ZHANG Q C, et al. Predesigning matrix-directed super-hydrophobization and hierarchical strengthening of cement foam[J]. Cement and Concrete Research, 2020, 131: 106029. [22] 赵洁燕. 丙酮脱水缩合生成异丙叉丙酮的动力学及催化精馏模拟研究[D]. 天津: 天津大学, 2019. ZHAO J Y. Kinetics and catalytic distillation simulation of acetone dehydration condensation to isopropylacetone[D]. Tianjin: Tianjin University, 2019 (in Chinese). [23] XIANG T F, LIU J, LV Z, et al. The effect of silicon-based waterproof agent on the wettability of superhydrophobic concrete and enhanced corrosion resistance[J]. Construction and Building Materials, 2021, 313: 125482. [24] 高英力, 何 倍, 蒋正武, 等. 超疏水改性自发光水泥基材料的性能与微结构[J]. 建筑材料学报, 2020, 23(1): 192-199+209. GAO Y L, HE B, JIANG Z W, et al. Properties and micro-structure of super-hydrophobic modified self-luminous cement-based materials[J]. Journal of Building Materials, 2020, 23(1): 192-199+209 (in Chinese). [25] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. [26] WENZEL R N. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467. |