[1] 刘卫东. “一带一路” 战略的科学内涵与科学问题[J]. 地理科学进展, 2015, 34(5): 538-544. LIU W D. Scientific understanding of the Belt and Road Initiative of China and related research themes[J]. Progress in Geography, 2015, 34(5): 538-544 (in Chinese). [2] 杨永敢. 硫酸盐环境下损伤混凝土的劣化机理与寿命预测[D]. 南京: 东南大学, 2019. YANG Y G. Deterioration mechanism and life prediction of damaged concrete in sulfate environment[D]. Nanjing: Southeast University, 2019 (in Chinese). [3] SANTHANAM M, COHEN M D, OLEK J. Mechanism of sulfate attack: a fresh look[J]. Cement and Concrete Research, 2002, 32(6): 915-921. [4] 侯保荣. 中国腐蚀成本[M]. 北京: 科学出版社, 2017. HOU B R. Corrosion costs in China[M]. Beijing: Science Press, 2017 (in Chinese). [5] 唐其环, 张先勇, 张 燕. 敦煌地区干热与干冷环境特征研究[J]. 装备环境工程, 2020, 17(12): 81-85. TANG Q H, ZHANG X Y, ZHANG Y. Environmental characteristics of dry heat and dry cold in Dunhuang area[J]. Equipment Environmental Engineering, 2020, 17(12): 81-85 (in Chinese). [6] 刘连新. 察尔汗盐湖及超盐渍土地区混凝土侵蚀及预防初探[J]. 建筑材料学报, 2001, 4(4): 395-400. LIU L X. Brief introduction on the study of erosion and prevention of concrete in salt lake and saline soil area of chaerhan, chaidamu[J]. Journal of Building Materials, 2001, 4(4): 395-400 (in Chinese). [7] 余红发, 孙 伟, 王甲春, 等. 盐湖地区的环境条件与混凝土和钢筋混凝土结构的耐久性[J]. 工业建筑, 2003, 33(3): 1-4+10. YU H F, SUN W, WANG J C, et al. Circumstance of salt lakes and the durability of concrete or reinforced concrete[J]. Industrial Construction, 2003, 33(3): 1-4+10 (in Chinese). [8] 王复生, 秦晓娟, 孙瑞莲. 青海察尔汗盐湖条件下水泥混凝土侵蚀的试验研究[J]. 硅酸盐通报, 2003, 22(4): 25-28. WANG F S, QIN X J, SUN R L. Study on corrosion and destruction of concrete under natural conditions of caerhan salt lake[J]. Bulletin of the Chinese Ceramic Society, 2003, 22(4): 25-28 (in Chinese). [9] NEVILLE A. The confused world of sulfate attack on concrete[J]. Cement and Concrete Research, 2004, 34(8): 1275-1296. [10] 谢森传, 沈言琍. Mariotte瓶装置的改进及应用[J]. 水文地质工程地质, 1985, 12(2): 18-19. XIE S C, SHEN Y L. Mariotte bottle device improvement and application[J]. Hydrogeology & Engineering Geology, 1985, 12(2): 18-19 (in Chinese). [11] PANG B, ZHOU Z H, HOU P K, et al. Autogenous and engineered healing mechanisms of carbonated steel slag aggregate in concrete[J]. Construction and Building Materials, 2016, 107: 191-202. [12] 石加顺. 非饱和水泥基材料气体渗透性研究[D]. 南京: 东南大学, 2020. SHI J S. Study on gas permeability of unsaturated cement-based materials[D]. Nanjing: Southeast University, 2020 (in Chinese). [13] XUE S B, MENG F Q, ZHANG P, et al. Influence of water re-curing on microstructure of heat-damaged cement mortar characterized by low-field NMR and MIP[J]. Construction and Building Materials, 2020, 262: 120532. [14] WANG D F, ZHANG Y S, LI Z H, et al. Systemical investigation on the determination of sulfate in cement-based materials based on a promoted conductometric titrator[J]. Measurement, 2022, 203: 111909. [15] SOTIRIADIS K, NIKOLOPOULOU E, TSIVILIS S. Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature[J]. Cement and Concrete Composites, 2012, 34(8): 903-910. [16] 孙道胜, 王 辉, 刘开伟, 等. 低湿度半浸泡环境下粉煤灰对砂浆试件硫酸盐侵蚀性能的影响[J]. 材料导报, 2020, 34(14): 14079-14086. SUN D S, WANG H, LIU K W, et al. Effect of fly ash on performance of mortars partially exposed to sulfate solution under low humidity[J]. Materials Reports, 2020, 34(14): 14079-14086 (in Chinese). [17] 刘赞群, 李湘宁, 侯 乐, 等. 粉煤灰加剧半浸泡混凝土硫酸盐侵蚀的研究[J]. 建筑材料学报, 2017, 20(3): 439-443+448. LIU Z Q, LI X N, HOU L, et al. Accelerating effect of fly ash on damage of concrete partially immersed to sulfate environment[J]. Journal of Building Materials, 2017, 20(3): 439-443+448 (in Chinese). [18] YANG Y G, ZHAN B G, WANG J F, et al. Damage evolution of cement mortar with high volume slag exposed to sulfate attack[J]. Construction and Building Materials, 2020, 247: 118626. [19] 李北星, 方 晴, 方 鹏. 大掺量掺合料混凝土半浸泡于硫酸盐溶液中的耐久性[J]. 哈尔滨工程大学学报, 2020, 41(6): 892-898. LI B X, FANG Q, FANG P. Durability of high-volume mineral admixture concrete half immersed in sodium sulfate solution[J]. Journal of Harbin Engineering University, 2020, 41(6): 892-898 (in Chinese). [20] LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cement and Concrete Research, 2011, 41(12): 1244-1256. [21] 刘赞群, 裴 敏, 张丰燕, 等. 半浸泡在Na2SO4溶液中水泥净浆不同部位化学侵蚀产物对比[J]. 建筑材料学报, 2020, 23(3): 485-492. LIU Z Q, PEI M, ZHANG F Y, et al. Comparison of chemical attack products in different zones of cement paste partially immersed in Na2SO4 solution[J]. Journal of Building Materials, 2020, 23(3): 485-492 (in Chinese). [22] 刘赞群, 候 乐, 邓德华, 等. 碳化混凝土硫酸钠盐结晶破坏[J]. 硅酸盐学报, 2017, 45(11): 1621-1628. LIU Z Q, HOU L, DENG D H, et al. Sodium sulfate salt crystallization distress on carbonated concrete [J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1621-1628 (in Chinese). [23] SANTHANAM M, COHEN M D, OLEK J. Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars[J]. Cement and Concrete Research, 2002, 32(4): 585-592. [24] STEIGER M, LINNOW K, JULING H, et al. Hydration of MgSO4·H2O and generation of stress in porous materials[J]. Crystal Growth & Design, 2008, 8(1): 336-343. [25] SPEZIALE S, JIANG F M, MAO Z, et al. Single-crystal elastic constants of natural ettringite[J]. Cement and Concrete Research, 2008, 38(7): 885-889. [26] 刘赞群, 胡文龙, 邓德华, 等. 碳化混凝土硫酸镁盐结晶破坏微观分析[J]. 硅酸盐学报, 2018, 46(5): 662-669. LIU Z Q, HU W L, DENG D H, et al. Micro-analysis of MgSO4 crystallization of carbonation Portland cement concrete[J]. Journal of the Chinese Ceramic Society, 2018, 46(5): 662-669 (in Chinese). [27] SCHERER G W. Stress from crystallization of salt[J]. Cement and Concrete Research, 2004, 34(9): 1613-1624. [28] ZHANG Z Y, ZHOU J T, YANG J, et al. Understanding of the deterioration characteristic of concrete exposed to external sulfate attack: insight into mesoscopic pore structures[J]. Construction and Building Materials, 2020, 260: 119932. |