[1] 赵合瑾, 万 贤, 路佳慧, 等. 相变储能材料在建筑领域的发展和应用[J]. 中国塑料, 2023, 37 (11): 46-61. ZHAO H J, WAN X, LU J H, et al. Development and application of phase change energy storage materials in the field of construction[J]. China Plastics, 2023, 37 (11): 46-61 (in Chinese). [2] 赵建华, 王 岳, 朱 磊, 等. 既有建筑围护结构内保温墙体热湿性能研究: 以天津和广州地区为例[J]. 建筑科学, 2023, 39(8): 143-151. ZHAO J H, WANG Y, ZHU L, et al. Study on the hygrothermal performance of interiorly insulated wall in existing building envelope: taking Tianjin and Guangzhou as examples[J]. Building Science, 2023, 39(8): 143-151 (in Chinese). [3] 中国建筑节能协会, 重庆大学城乡建设与发展研究院. 中国建筑能耗与碳排放研究报告(2022年)[J]. 建筑, 2023(2): 57-69. China Building Energy Efficiency Association, Chongqing University Urban and Rural Construction and Development Institute. Research report on building energy consumption and carbon emissions in China (2022)[J]. Construction and Architecture, 2023(2): 57-69 (in Chinese). [4] 杨 俊, 王武祥, 杨升辉, 等. 偏高岭土对超轻泡沫混凝土的性能影响研究[J]. 混凝土, 2022(12): 168-171+175. YANG J, WANG W X, YANG S H, et al. Study on the effect of metakaolin on the performance of ultra-light foamed concrete[J]. Concrete, 2022(12): 168-171+175 (in Chinese). [5] 周学军, 咸国栋, 王 振, 等. 高强度低导热泡沫混凝土性能研究[J]. 硅酸盐通报, 2021, 40(4): 1186-1192. ZHOU X J, XIAN G D, WANG Z, et al. Performance of high strength and low thermal conductivity foamed concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1186-1192 (in Chinese). [6] 高志涵,陈 波,陈家林,等. 冻融环境下泡沫混凝土的孔结构与力学性能[J].复合材料学报, 2024, 41(2): 827-838. GAO Z H, CHEN B, CHEN J L, et al. Pore structure and mechanical properties of foamed concrete under freeze-thaw environment[J]. Journal of Composite Materials, 2024, 41(2): 827-838 (in Chinese). [7] 魏伟明, 邱建锋, 汪 磊, 等. 尾矿基发泡水泥隔热材料性能增强工艺研究[J]. 矿产保护与利用, 2021, 41(4): 119-123. WEI W M, QIU J F, WANG L, et al. Study on performance enhancement process of tailings-based foamed cement insulation material[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 119-123 (in Chinese). [8] 吴子豪, 王武祥, 刘晓通, 等. 硅灰对超轻水泥基复合保温材料性能的影响[J]. 硅酸盐通报, 2021, 40(12): 4030-4036. WU Z H, WANG W X, LIU X T, et al. Effect of silica fume on properties of ultra-light cement-based composite thermal insulation materials[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 4030-4036 (in Chinese). [9] 姚田帅, 田 青, 张 苗, 等. 碱激发再生微粉-矿渣制备泡沫保温材料及其性能[J]. 硅酸盐学报, 2023, 51(11): 2966-2977. YAO T S, TIAN Q, ZHANG M, et al. Preparation and properties of foam insulation material by alkali-activate recycled powder-ground granulated blast furnace slag[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2966-2977 (in Chinese). [10] 陈永亮, 张轶轲, 陈铁军, 等. 碱激发高钙粉煤灰发泡地聚合物的制备及机理[J]. 硅酸盐通报, 2023, 42(8): 2787-2798. CHEN Y L, ZHANG Y K, CHEN T J, et al. Preparation and mechanism of foaming geopolymer with alkali activated high calcium fly ash[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2787-2798 (in Chinese). [11] 王大鹏, 吴 凯. 碱激发矿渣-金尾矿基泡沫混凝土的制备及其特性研究[J]. 矿业研究与开发, 2023, 43(5): 216-222. WANG D P, WU K. Study on preparation and properties of alkali activated slag-gold tailings based foam concrete[J]. Mining Research and Development, 2023, 43(5): 216-222 (in Chinese). [12] 张志明, 桂联政, 廖达琛, 等. 燃煤电厂粉煤灰高值化利用研究进展[J]. 能源环境保护, 2023, 37(4): 1-11. ZHANG Z M, GUI L Z, LIAO D C, et al. Advances in high-value utilization of fly ash from coal-fired power plants[J]. Energy Environmental Protection, 2023, 37(4): 1-11 (in Chinese). [13] 胡 驰, 李 辉, 刘中炜, 等. 粉煤灰漂珠增强泡沫混凝土性能试验研究[J]. 新型建筑材料, 2017, 44(3): 76-80. HU C, LI H, LIU Z W, et al. Research on properties of foamed concrete reinforced with fly ash cenospheres[J]. New Building Materials, 2017, 44(3): 76-80 (in Chinese). [14] 丁小蒙. 冷成型钢-泡沫混凝土粘结锚固及复合墙体抗震性能研究[D]. 南京: 东南大学, 2020. DING X M. Study on bond anchorage of cold-formed steel-foam concrete and seismic performance of composite wall[D]. Nanjing: Southeast University, 2020 (in Chinese). [15] 刘中炜, 赵 康, 汤玉斐, 等. 轻骨料对泡沫混凝土性能的影响[J]. 新型建筑材料, 2019, 46(10): 19-23+38. LIU Z W, ZHAO K, TANG Y F, et al. Effects of light-weight aggregate on performance of foamed concrete[J]. New Building Materials, 2019, 46(10): 19-23+38 (in Chinese). [16] WU J Q, LU Z H, CHEN Y T, et al. Mechanical properties and cracking behaviour of lightweight engineered geopolymer composites with fly ash cenospheres[J]. Construction and Building Materials, 2023, 400: 132622. [17] 陈新明, 张浩文, 焦华喆, 等. HPMC及硼砂对新型防漏高强注浆料性能及微观结构的影响[J]. 硅酸盐通报, 2023, 42(3): 861-870. CHEN X M, ZHANG H W, JIAO H Z, et al. Effects of HPMC and borax on properties and microstructure of new leak-proof and high-strength grouting material[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 861-870 (in Chinese). [18] STRZAŁKOWSKI J, STOLARSKA A, KOZ·UCH D, et al. Hygrothermal and strength properties of cement mortars containing cenospheres[J]. Cement and Concrete Research, 2023, 174: 107325. [19] 陈友治, 姚广一, 殷伟淞, 等. 漂珠自养护超高性能混凝土配制及性能研究[J]. 武汉理工大学学报, 2019, 41(10): 12-18. CHEN Y Z, YAO G Y, YIN W S, et al. Preparation and study on the properties of self-curing UHPC containing cenosphere[J]. Journal of Wuhan University of Technology, 2019, 41(10): 12-18 (in Chinese). [20] 朱艳梅, 张 翼, 蒋正武. 羟丙基甲基纤维素对3D打印砂浆性能的影响[J]. 建筑材料学报, 2021, 24(6): 1123-1130. ZHU Y M, ZHANG Y, JIANG Z W. Effect of hydroxypropyl methylcellulose ether on properties of 3D printing mortar[J]. Journal of Building Materials, 2021, 24(6): 1123-1130 (in Chinese). [21] SUN L, XU Y D, WANG J L, et al. Designing a superhydrophobic quality and strengthening mechanism for foam concrete[J]. Construction and Building Materials, 2023, 365: 130073. |