[1] 高长明. 2050年世界及中国水泥工业发展预测与展望[J]. 新世纪水泥导报, 2019, 25(2): 1-3+6. GAO C M. Development forecast and prospect of cement industry in the world and China in 2050[J]. Cement Guide for New Epoch, 2019, 25(2): 1-3+6 (in Chinese). [2] XING W Q, TAM V W, LE K N, et al. Life cycle assessment of sustainable concrete with recycled aggregate and supplementary cementitious materials[J]. Resources, Conservation and Recycling, 2023, 193: 106947. [3] KUMAR A, DEEP K. Experimental investigation of concrete with cementitious waste material such as GGBS & fly ash over conventional concrete[J]. Materials Today: Proceedings, 2023, 74: 953-961. [4] FAN J C, ZHANG B. Repair of ordinary Portland cement concrete using alkali activated slag/fly ash: freeze-thaw resistance and pore size evolution of adhesive interface[J]. Construction and Building Materials, 2021, 300: 124334. [5] 毕弘毅. 大掺量矿物掺合料混凝土抗硫酸盐腐蚀性能研究[D]. 秦皇岛: 燕山大学, 2018. BI H Y. Study on sulfate corrosion resistance of concrete with large amount of mineral admixture[D]. Qinhuangdao: Yanshan University, 2018 (in Chinese). [6] LI Z P, GAO X J, LU D G, et al. Early hydration properties and reaction kinetics of multi-composite cement pastes with supplementary cementitious materials (SCMs)[J]. Thermochimica Acta, 2022, 709: 179157. [7] LI C Z, JIANG L H, XU N, et al. Pore structure and permeability of concrete with high volume of limestone powder addition[J]. Powder Technology, 2018, 338: 416-424. [8] 陈益民, 贺行洋, 李永鑫, 等. 矿物掺合料研究进展及存在的问题[J]. 材料导报, 2006, 20(8): 28-31. CHEN Y M, HE X Y, LI Y X, et al. Research progress and shortcoming of mineral admixtures[J]. Materials Review, 2006, 20(8): 28-31 (in Chinese). [9] WANG X Y. Analysis of hydration and strength optimization of cement-fly ash-limestone ternary blended concrete[J]. Construction and Building Materials, 2018, 166: 130-140. [10] 贾 佳, 曾 鑫. 掺加辅助胶凝材料高性能混凝土抗压强度研究[J]. 混凝土世界, 2022(12): 59-65. JIA J, ZENG X. Study on compressive strength of high performance concrete with auxiliary cementitious materials[J]. China Concrete, 2022(12): 59-65 (in Chinese). [11] ZENG Q S, LIU X M, ZHANG Z Q, et al. Synergistic utilization of blast furnace slag with other industrial solid wastes in cement and concrete industry: synergistic mechanisms, applications, and challenges[J]. Green Energy and Resources, 2023, 1(2): 100012. [12] 王 喆, 王栋民. 不同复合矿物掺合料对混凝土长期性能的影响差异[J]. 硅酸盐通报, 2015, 34(8): 2392-2397. WANG Z, WANG D M. Influence of different multi-mineral admixtures on long period performance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(8): 2392-2397 (in Chinese). [13] LUO T, WANG Q, ZHUANG S Y. Effects of ultra-fine ground granulated blast-furnace slag on initial setting time, fluidity and rheological properties of cement pastes[J]. Powder Technology, 2019, 345: 54-63. [14] 王 召. 石灰石粉-粉煤灰-矿渣混凝土基本力学性能与粘结性能研究[D]. 徐州: 中国矿业大学, 2017. WANG Z. Study on basic mechanical properties and bonding properties of limestone powder-fly ash-slag concrete[D]. Xuzhou: China University of Mining and Technology, 2017 (in Chinese). [15] 杨钱荣, 赵宗志, 张庆钊, 等. 若干因素对水泥砂浆流变性能的影响[J]. 建筑材料学报, 2019, 22(4): 506-515. YANG Q R, ZHAO Z Z, ZHANG Q Z, et al. Influence of several factors on rheological properties of cement mortar[J]. Journal of Building Materials, 2019, 22(4): 506-515 (in Chinese). [16] 刘 宇, 黎梦圆, 阎培渝. 矿物掺合料对胶凝材料浆体流变性能和触变性的影响[J]. 硅酸盐学报, 2019, 47(5): 594-601. LIU Y, LI M Y, YAN P Y. Effect of mineral admixtures on rheological properties and thixotropy of binder paste[J]. Journal of the Chinese Ceramic Society, 2019, 47(5): 594-601 (in Chinese). [17] 唐田甜. 大掺量粉煤灰矿用水泥基封孔材料的早强性能研究[D]. 淮南: 安徽理工大学, 2020. TANG T T. Study on early strength properties of cement-based hole sealing materials for mines with large amount of fly ash[D]. Huainan: Anhui University of Science & Technology, 2020 (in Chinese). [18] 蒋 鹤, 李树繁, 王小明, 等. 复合掺合料对水泥胶砂流动度和长期强度的影响[J]. 混凝土与水泥制品, 2021(1): 1-6. JIANG H, LI S F, WANG X M, et al. Effect of composite admixtures on fluidity and long-term strength of cement mortar[J]. China Concrete and Cement Products, 2021(1): 1-6 (in Chinese). [19] BENTZ D P, ARDANI A, BARRETT T, et al. Multi-scale investigation of the performance of limestone in concrete[J]. Construction and Building Materials, 2015, 75: 1-10. [20] RUAN Y X, JAMIL T, HU C L, et al. Microstructure and mechanical properties of sustainable cementitious materials with ultra-high substitution level of calcined clay and limestone powder[J]. Construction and Building Materials, 2022, 314: 125416. [21] 陈友治, 吴修齐, 殷伟淞, 等. 电石渣对复合胶凝材料力学性能和微观结构的影响[J]. 硅酸盐通报, 2023, 42(9): 3196-3203. CHEN Y Z, WU X Q, YIN W S, et al. Effect of calcium carbide residue on mechanical properties and microstructure of composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3196-3203 (in Chinese). [22] 于本田, 李彦宵, 张占旭, 等. 不同石粉及掺量对高延性工程水泥基复合材料的性能影响[J/OL]. 吉林大学学报(工学版): 1-15 [2023-10-07]. https://doi.org/10.13229/j.cnki.jdxbgxb.20221623. YU B T, LI Y X, ZHANG Z X, et al. Effects of different stone powders and additives on the properties of high ductility engineering cement-based composite materials[J/OL]. Journal of Jilin University (Engineering Edition): 1-15 [2023-10-07]. https://doi.org/10.13229/j.cnki.jdxbgxb.20221623 (in Chinese). |