BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (5): 1796-1811.
Special Issue: 水泥混凝土
• Cement and Concrete • Previous Articles Next Articles
LI Yuyang1,2, ZHAO Lige3, LIU Shuang1,2, HAN Kang1,2, LIU Yanjun1,2, LI Runfeng1,2, ZHENG Yongchao1,2
Received:
2023-11-02
Revised:
2023-12-20
Online:
2024-05-15
Published:
2024-06-06
CLC Number:
LI Yuyang, ZHAO Lige, LIU Shuang, HAN Kang, LIU Yanjun, LI Runfeng, ZHENG Yongchao. Research Progress in Dispersion Technology and Characterization Methods of Carbon Nanomaterials in Cementitious Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1796-1811.
[1] DU M R, JING H W, GAO Y, et al. Carbon nanomaterials enhanced cement-based composites: advances and challenges[J]. Nanotechnology Reviews, 2020, 9(1): 115-135. [2] 王 丹. 纳米SiO2对水泥基材料表面改性研究[D]. 济南: 济南大学, 2018. WANG D. The study on surface modification of cement-based materials by nano-silica[D]. Jinan: University of Jinan, 2018 (in Chinese). [3] 高瑞军. 原位聚合制备GO-PCE及对水泥基材料性能影响与作用机理[D]. 北京: 中国建筑材料科学研究总院, 2020. GAO R J. In-situ polymerization of GO-PCE and its effect and action mechanism on the properties of cement-based materials[D]. Beijing: China Building Materials Research Institute, 2020 (in Chinese). [4] KIEW S F, KIEW L V, LEE H B, et al. Assessing biocompatibility of graphene oxide-based nanocarriers: a review[J]. Journal of Controlled Release, 2016, 226: 217-228. [5] 徐凯丽. 石墨烯-水泥基复合材料的制备及其功能性研究[D]. 南京: 东南大学, 2018. XU K L. Preparation and investigation on functional prorperties of graphene-cement composites[D]. Nanjing: Southeast University, 2018 (in Chinese). [6] LI X Y, KORAYEM A H, LI C Y, et al. Incorporation of graphene oxide and silica fume into cement paste: a study of dispersion and compressive strength[J]. Construction and Building Materials, 2016, 123: 327-335. [7] LIU Y H, YU L, ZHANG S H, et al. Dispersion of multiwalled carbon nanotubes by ionic liquid-type Gemini imidazolium surfactants in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 359(1/2/3): 66-70. [8] DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 2008, 3(8): 491-495. [9] 黄宛真, 杨 倩, 叶晓丹, 等. 石墨烯层数的表征[J]. 材料导报, 2012, 26(7): 26-30. HUANG W Z, YANG Q, YE X D, et al. Characterization of graphene layers[J]. Materials Review, 2012, 26(7): 26-30 (in Chinese). [10] NIETO A, BISHT A, LAHIRI D, et al. Graphene reinforced metal and ceramic matrix composites: a review[J]. International Materials Reviews, 2017, 62(5): 241-302. [11] RHEE I, KIM Y A, SHIN G O, et al. Compressive strength sensitivity of cement mortar using rice husk-derived graphene with a high specific surface area[J]. Construction and Building Materials, 2015, 96: 189-197. [12] ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. [13] WU L, LIU L, GAO B, et al. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2013, 29(49): 15174-15181. [14] SALVETAT J P, BONARD J M, THOMSON N H, et al. Mechanical properties of carbon nanotubes[J]. Applied Physics A, 1999, 69(3): 255-260. [15] CWIRZEN A. Controlling physical properties of cementitious matrixes by nanomaterials[J]. Advanced Materials Research, 2010, 123/124/125: 639-642. [16] CWIRZEN A, HABERMEHL-CWIRZEN K, NASIBULIN A G, et al. SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles[J]. Materials Characterization, 2009, 60(7): 735-740. [17] RAFIEE M A, LU W, THOMAS A V, et al. Graphene nanoribbon composites[J]. ACS Nano, 2010, 4(12): 7415-7420. [18] WANG L N, ASLANI F. A review on material design, performance, and practical application of electrically conductive cementitious composites[J]. Construction and Building Materials, 2019, 229: 116892. [19] 武玺旺, 肖建中, 夏 风, 等. 碳纳米管的分散方法与分散机理[J]. 材料导报, 2011, 25(9): 16-19. WU X W, XIAO J Z, XIA F, et al. Dispersion methods and dispersion mechanism of carbon nanotubes[J]. Materials Review, 2011, 25(9): 16-19 (in Chinese). [20] DU H J, PANG S D. Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites[J]. Construction and Building Materials, 2018, 167: 403-413. [21] OZBULUT O E, JIANG Z F, HARRIS D K. Exploring scalable fabrication of self-sensing cementitious composites with graphene nanoplatelets[J]. Smart Material Structures, 2018, 27(11): 115029. [22] JING G J, YE Z M, LI C, et al. A ball milling strategy to disperse graphene oxide in cement composites[J]. New Carbon Materials, 2019, 34(6): 569-577. [23] PAN Z, HE L, QIU L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cement and Concrete Composites, 2015, 58: 140-147. [24] ZHAO L, GUO X L, GE C, et al. Mechanical behavior and toughening mechanism of polycarboxylate superplasticizer modified graphene oxide reinforced cement composites[J]. Composites Part B: Engineering, 2017, 113: 308-316. [25] ZHAO L, GUO X L, LIU Y Y, et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution[J]. Carbon, 2018, 127: 255-269. [26] PARVEEN S, RANA S, FANGUEIRO R, et al. Characterizing dispersion and long term stability of concentrated carbon nanotube aqueous suspensions for fabricating ductile cementitious composites[J]. Powder Technology, 2017, 307: 1-9. [27] PIERARD N, FONSECA A, KONYA Z, et al. Production of short carbon nanotubes with open tips by ball milling[J]. Chemical Physics Letters, 2001, 335(1/2): 1-8. [28] TORABIAN I F, LI W W, REDAELLI E. Dispersion of multi-walled carbon nanotubes and its effects on the properties of cement composites[J]. Cement and Concrete Composites, 2016, 74: 154-163. [29] SINDU B S, SASMAL S. Properties of carbon nanotube reinforced cement composite synthesized using different types of surfactants[J]. Construction and Building Materials, 2017, 155: 389-399. [30] 施 韬, 朱 敏, 李泽鑫, 等. 碳纳米管改性水泥基复合材料的研究进展[J]. 复合材料学报, 2018, 35(5): 1033-1049. SHI T, ZHU M, LI Z X, et al. Review of research progress on carbon nanotubes modified cementitious composites[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1033-1049 (in Chinese). [31] 李庚英, 王培铭. 碳纳米管-水泥基复合材料的力学性能和微观结构[J]. 硅酸盐学报, 2005, 33(1): 105-108. LI G Y, WANG P M. Microstructure and mechanical properties of carbon nanotubes cement matrix composites[J]. Journal of the Chinese Ceramic Society, 2005, 33(1): 105-108 (in Chinese). [32] AN J, MCINNIS M, CHUNG W, et al. Feasibility of using graphene oxide nanoflake (GONF) as additive of cement composite[J]. Applied Sciences, 2018, 8(3): 419. [33] 晏 琪, 陈 彪, 李金山. 碳纳米材料增强钛基复合材料研究进展[J]. 中国材料进展, 2019, 38(11): 1061-1073. YAN Q, CHEN B, LI J S. A review of carbon nanomaterials reinforced titanium metal matrix composites[J]. Materials China, 2019, 38(11): 1061-1073 (in Chinese). [34] 吴乐华, 吴其胜, 许 文. 干湿球磨法制备石墨烯及其摩擦性能表征[J]. 材料科学与工程学报, 2014, 32(5): 678-681+740. WU L H, WU Q S, XU W. Preparation and tribological properties of graphene by dry and wet ball milling[J]. Journal of Materials Science and Engineering, 2014, 32(5): 678-681+740 (in Chinese). [35] 张继旭, 叶帆胜. 碳纳米管在水泥基复合材料中的分散方法研究[J]. 建材世界, 2020, 41(5): 6-9. ZHANG J X, YE F S. Study on dispersion method of carbon nanotubes in cement-based composites[J]. The World of Building Materials, 2020, 41(5): 6-9 (in Chinese). [36] DONG W K, LI W G, WANG K J, et al. Physicochemical and piezoresistive properties of smart cementitious composites with graphene nanoplates and graphite plates[J]. Construction and Building Materials, 2021, 286: 122943. [37] KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research, 2010, 40(7): 1052-1059. [38] CHEN S J, ZOU B, COLLINS F, et al. Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes[J]. Carbon, 2014, 77: 1-10. [39] GAO F F, TIAN W, WANG Z, et al. Effect of diameter of multi-walled carbon nanotubes on mechanical properties and microstructure of the cement-based materials[J]. Construction and Building Materials, 2020, 260: 120452. [40] ZOU B, CHEN S J, KORAYEM A H, et al. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes[J]. Carbon, 2015, 85: 212-220. [41] 丁建涛, 孟凡涛, 隋 江, 等. 石墨烯分散方法研究进展[J]. 应用化工, 2018, 47(5): 1043-1047. DING J T, MENG F T, SUI J, et al. A review of graphene dispersion method[J]. Applied Chemical Industry, 2018, 47(5): 1043-1047 (in Chinese). [42] 赵 丽. PC改性GO对水泥基复合材料的强化及其机理研究[D]. 南京: 东南大学, 2018. ZHAO L. Effects of PC modified GO on the reinforcement of cement composites[D]. Nanjing: Southeast University, 2018 (in Chinese). [43] COLLINS F, LAMBERT J, DUAN W H. The influences of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures[J]. Cement and Concrete Composites, 2012, 34(2): 201-207. [44] WANG B M, HAN Y, LIU S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites[J]. Construction and Building Materials, 2013, 46: 8-12. [45] SOBOLKINA A, MECHTCHERINE V, KHAVRUS V, et al. Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix[J]. Cement and Concrete Composites, 2012, 34(10): 1104-1113. [46] LUO J L, DUAN Z D, LI H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites[J]. Physica Status Solidi (A), 2009, 206(12): 2783-2790. [47] 牛荻涛, 何嘉琦, 傅 强, 等. 碳纳米管对水泥基材料微观结构及耐久性能的影响[J]. 硅酸盐学报, 2020, 48(5): 705-717. NIU D T, HE J Q, FU Q, et al. Effect of carbon nanotubes on microstructure and durability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 705-717 (in Chinese). [48] TASIS D, TAGMATARCHIS N, BIANCO A, et al. Chemistry of carbon nanotubes[J]. Chemical Reviews, 2006, 106(3): 1105-1136. [49] 江琳沁, 高 濂. 化学处理对碳纳米管分散性能的影响[J]. 无机材料学报, 2003, 18(5): 1135-1138. JIANG L Q, GAO L. Effect of chemical treatment on the dispersion properties of carbon nanotubes[J]. Journal of Inorganic Materials, 2003, 18(5): 1135-1138 (in Chinese). [50] CHUAH S, LI W G, CHEN S J, et al. Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments[J]. Construction and Building Materials, 2018, 161: 519-527. [51] KIM H K, NAM I W, LEE H K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume[J]. Composite Structures, 2014, 107: 60-69. [52] LI X Y, LI C Y, LIU Y M, et al. Improvement of mechanical properties by incorporating graphene oxide into cement mortar[J]. Mechanics of Advanced Materials and Structures, 2018, 25(15/16): 1313-1322. [53] CHENG Z, LIU Y M, WU J Y, et al. Graphene oxide-coated fly ash for high performance and low-carbon cementitious composites[J]. Journal of Materials Research and Technology, 2023, 25: 6710-6724. [54] SHANG Y, ZHANG D, YANG C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Construction and Building Materials, 2015, 96: 20-28. [55] LUDVIG P, CALIXTO J M F, LADEIRA L O, et al. Analysis of cementitious composites prepared with carbon nanotubes and nanofibers synthesized directly on clinker and silica fume[J]. Journal of Materials in Civil Engineering, 2017, 29(6): 06017001. [56] LUDVIG P, LADEIRA L O, CALIXTO J M, et al. In-situ synthesis of multiwall carbon nanotubes on portland cement clinker[C]//11th International Conference on Advanced Materials, Rie de Janeire, Brazil. 2009. [57] NASIBULINA L I, ANOSHKIN I V, SEMENCHA A V, et al. Carbon nanofiber/clinker hybrid material as a highly efficient modificator of mortar mechanical properties[J]. Materials Physics and Mechanics, 2012, 13(1): 77-84. [58] 王宝民, 韩 瑜, 宋 凯. 碳纳米管分散性研究进展[J]. 材料导报, 2012, 26(7): 23-25+30. WANG B M, HAN Y, SONG K. Research progress of the dispersion of carbon nanotubes[J]. Materials Review, 2012, 26(7): 23-25+30 (in Chinese). [59] MARTIN C A, SANDLER J K W, WINDLE A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites[J]. Polymer, 2005, 46(3): 877-886. [60] SHAO H Y, CHEN B M, LI B, et al. Influence of dispersants on the properties of CNTs reinforced cement-based materials[J]. Construction and Building Materials, 2017, 131: 186-194. [61] 唐倩兰, 黄 俊, 田国鑫. 碳纳米管分散性及其水泥基复合材料力学性能的研究进展[J]. 功能材料, 2017, 48(6): 6042-6049. TANG Q L, HUANG J, TIAN G X. Dispersion of carbon nanotubes and research progress on mechanical properties of carbon nanotubes cement-based composites[J]. Journal of Functional Materials, 2017, 48(6): 6042-6049 (in Chinese). [62] SATO H, SANO M. Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322(1/2/3): 103-107. [63] YU J R, GROSSIORD N, KONING C E, et al. Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution[J]. Carbon, 2007, 45(3): 618-623. [64] JIANG L Q, GAO L, SUN J. Production of aqueous colloidal dispersions of carbon nanotubes[J]. Journal of Colloid and Interface Science, 2003, 260(1): 89-94. [65] 詹达富. 石墨烯水泥基复合材料的制备及机敏性能研究[D]. 北京: 北京建筑大学, 2021. ZHAN D F. Preparation and research on mechanical sensitivity of graphene cement-based composite[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021 (in Chinese). [66] 聂 鹏, 王新鑫, 高 霁, 等. 纳米复合材料分散相分散均匀性的分形表征[J]. 北京航空航天大学学报, 2009, 35(7): 852-855. NIE P, WANG X X, GAO J, et al. Fractal characterization of uniformity of discrete phase in nanocomposites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7): 852-855 (in Chinese). [67] 杜宇航. 氧化石墨烯/碳纳米管协同增强水泥基复合材料及其机理研究[D]. 上海: 上海交通大学, 2021. DU Y H. Effects and mechanism of GO/CNTs hybrid on the enhancement of cement composites[D]. Shanghai: Shanghai Jiao Tong University, 2021 (in Chinese). [68] 齐国栋. 氧化石墨烯的分散行为及对水泥水化性能影响研究[D]. 北京: 北京建筑大学, 2021. QI G D. The dispersion behavior of graphene oxide and the effect on the hydrationperformance of cement[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2021 (in Chinese). [69] KINLOCH I A, ROBERTS S A, WINDLE A H. A rheological study of concentrated aqueous nanotube dispersions[J]. Polymer, 2002, 43(26): 7483-7491. [70] FAN Z H, HSIAO K T, ADVANI S G. Experimental investigation of dispersion during flow of multi-walled carbon nanotube/polymer suspension in fibrous porous media[J]. Carbon, 2004, 42(4): 871-876. [71] YANG Y, GRULKE E A, ZHANG Z G, et al. Thermal and rheological properties of carbon nanotube-in-oil dispersions[J]. Journal of Applied Physics, 2006, 99(11): 114307. |
[1] | WU Chunqun, HAN Kang, LI Denghui, YANG Huashan. Effect of Attapulgite Clay on Working Performance and Compressive Strength of 3D Printed Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1683-1693. |
[2] | LUO Shu, LI Zhijian, WANG Li. Mechanical Properties of 3D Printed Concrete Reinforced by Embedding Multi-Cables [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1694-1703. |
[3] | FANG Wanxian, ZENG Chen, ZHANG Ze, ZHANG Mingyu, HUANG Qizhong, GAO Ying. Sintering Property and Anti-Ablation Resistance of ZrB2-SiC Ceramics Modified by CeO2/MoSi2 [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1937-1949. |
[4] | LYU Yajun, SONG Caihong, DANG Juntao, DONG Binbin, QIAO Min, ZHANG Kangjie, MA Xiaofeng. Comparative Study on Performance of Two Water Resistant Long Afterglow Materials for Preparing Luminescent Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 781-792. |
[5] | LI Zichao, ZHU Junge, YUE Hongzhi, MA Laijun, ZHAO Haoyu, ZHONG Jiayi. Freeze-Thaw Resistance of Activated Red Mud Based Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 965-976. |
[6] | WANG Yixiao, XU Yaoqun, ZHANG Ang, LIN Xinhao, YANG Manman. Comprehensive Evaluation of Performance and Environmental Impact of Mineralization Curing Alkali Activated Solid Waste Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 977-986. |
[7] | MIAO Xinyu, LIU Shuangyu, LU Ping, ZHANG Fulong, Vasilieva Tatiana Mikhailovna, HUANG Chuanjin, WANG Liyan, WANG Binhua. Effect of Silane Coupling Agent on Flow and 3D Printing Performance of Alumina Ceramic Pastes [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 1058-1069. |
[8] | JIANG Demin, XU Haodong, KANG Honglong, HU Siyu. Problems Faced by Plant Fiber Reinforced Cement-Based Composites and Research Status of Its Related Modification [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 387-396. |
[9] | HONG Qiaoheng, HE Xiongfei, ZHANG Minglang, TANG Gang, HUANG Wei. Mechanical Property and Resistance to Water Dispersion of Solid Waste Shield Inert Synchronous Grouting Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 617-626. |
[10] | LI Shuai, ZHOU Fengjiao, TAN Xinyu, ZHANG Bin, LIN Yongquan, TAO Congxi, HUANG Mingjun. Effect of Carbon Dioxide Concentration on Performance of Low-Calcium Carbon Sequestration Cementitious Materials and Its Mechanism [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3109-3116. |
[11] | ZHANG Pinle, DENG Rang, HU Jing, WU Lei, TAO Zhong. Flexural Performance of Steel-PVA Hybrid Fiber Engineered Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3125-3134. |
[12] | CHEN Youzhi, WU Xiuqi, YIN Weisong, LI Wanmin, TANG Shichang. Effect of Calcium Carbide Residue on Mechanical Properties and Microstructure of Composite Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3196-3203. |
[13] | YUAN Zhiyong, ZHANG Xueri, LI Kai, XU Chengming, WU Jiali, LIAO Cangdong, ZHENG Meng, WU Yinghao, YAN Faqiang. Evolution of Composition, Structure and Mechanical Properties of High Alumina Porcelain with Sintering Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3315-3323. |
[14] | CHE Zhihao, WANG Jiabin, ZHANG Kaifeng, FAN Yijie. Durability Degradation Law of Recycled Aggregate Concrete with Multiple Cementitious Materials System Subjected to Compound Salt Erosion [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2733-2742. |
[15] | LUO Zhe, HUANG Dunwen, PENG Hui. Alkali-Aggregate Reaction Mechanism of Alkali-Activated Metakaolin-Slag Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2830-2836. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||