[1] KHOSHNEVIS B. Automated construction by contour crafting: related robotics and information technologies[J]. Automation in Construction, 2004, 13(1): 5-19. [2] RAHUL A V, SANTHANAM M, MEENA H, et al. 3D printable concrete: mixture design and test methods[J]. Cement and Concrete Composites, 2019, 97: 13-23. [3] HOU S D, DUAN Z H, XIAO J Z, et al. A review of 3D printed concrete: performance requirements, testing measurements and mix design[J]. Construction and Building Materials, 2021, 273: 121745. [4] 高 扬. 煤矸石作混凝土粗集料发展现状[J]. 建材发展导向, 2022, 20(16): 4-6. GAO Y. Development status of coal gangue as coarse aggregate of concrete[J]. Development Guide to Building Materials, 2022, 20(16): 4-6 (in Chinese). [5] 于乐乐, 王爱国, 仲小凡, 等. 煤矸石骨料混凝土力学和耐久性能研究进展[J/OL]. 材料导报, 2023: 1-19 [2024-01-28]. https://kns.cnki.net/kcms/detail/50.1078.TB.20231227.1740.010.html. YU L L, WANG A G, ZHONG X F, et al. Progress in the study of mechanical and durability performance of concrete with coal gangue aggregates[J/OL]. Materials Reports, 2023: 1-19 [2024-01-28]. https://kns.cnki.net/kcms/detail/50.1078.TB.20231227.1740.010.html (in Chinese). [6] 温久然, 刘小婷, 刘开平, 等. 黏土质煤矸石强化技术研究[J]. 硅酸盐通报, 2020, 39(1): 233-241. WEN J R, LIU X T, LIU K P, et al. Study on clay coal gangue strengthening technology[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 233-241 (in Chinese). [7] 王爱国, 朱愿愿, 徐海燕, 等. 混凝土用煤矸石骨料的研究进展[J]. 硅酸盐通报, 2019, 38(7): 2076-2086. WANG A G, ZHU Y Y, XU H Y, et al. Research progress of coal gangue aggregate for concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2076-2086 (in Chinese). [8] 朱愿愿, 王爱国, 孙道胜, 等. 煅烧煤矸石细骨料特性及其对砂浆性能的提升作用[J]. 煤炭学报, 2021, 46(11): 3657-3669. ZHU Y Y, WANG A G, SUN D S, et al. Characteristics of coal gangue fine aggregates after calcination and its effects on the improvement of mortar properties[J]. Journal of China Coal Society, 2021, 46(11): 3657-3669 (in Chinese). [9] XIAO J Z, ZOU S, YU Y, et al. 3D recycled mortar printing: system development, process design, material properties and on-site printing[J]. Journal of Building Engineering, 2020, 32: 101779. [10] ZOU S, XIAO J, DING T, et al. Printability and advantages of 3D printing mortar with 100% recycled sand[J]. Construction and Building Materials. 2021, 273: 121699. [11] ŞAHIN H G, MARDANI-AGHABAGLOU A. Assessment of materials, design parameters and some properties of 3D printing concrete mixtures; a state-of-the-art review[J]. Construction and Building Materials, 2022, 316: 125865. [12] ZHANG C, DENG Z C, CHEN C, et al. Predicting the static yield stress of 3D printable concrete based on flowability of paste and thickness of excess paste layer[J]. Cement and Concrete Composites, 2022, 129: 104494. [13] WALLEVIK J E. Minimizing end-effects in the coaxial cylinders viscometer: viscoplastic flow inside the ConTec BML Viscometer 3[J]. Journal of Non-Newtonian Fluid Mechanics, 2008, 155(3): 116-123. [14] FEYS D, WALLEVIK J E, YAHIA A, et al. Extension of the Reiner-Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers[J]. Materials and Structures, 2013, 46(1): 289-311. |