BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (4): 1463-1471.
• Solid Waste and Eco-Materials • Previous Articles Next Articles
HUANG Dajian, WANG Zhiwu, TANG Wenjie, ZHANG Quanchao, QIANG Xiaohu
Received:
2023-10-28
Revised:
2023-12-12
Online:
2024-04-15
Published:
2024-04-17
CLC Number:
HUANG Dajian, WANG Zhiwu, TANG Wenjie, ZHANG Quanchao, QIANG Xiaohu. Effect of Curing Environment on Properties and Microstructure of Metakaolin Based Geopolymers[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1463-1471.
[1] MA B, LUO Y, ZHOU L Z, et al. The influence of calcium hydroxide on the performance of MK-based geopolymer[J]. Construction and Building Materials, 2022, 329: 127224. [2] 孙 杰, 陈国珍, 吕康琪, 等. 橡胶地聚物混凝土力学性能及阻尼特性试验研究[J]. 复合材料学报, 2022, 39(11): 5321-5332. SUN J, CHEN G Z, LV K Q, et al. Experimental study on mechanical properties and damping characteristics of rubber geopolymer concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5321-5332 (in Chinese). [3] ALBITAR M, MOHAMED ALI M S, VISINTIN P, et al. Durability evaluation of geopolymer and conventional concretes[J]. Construction and Building Materials, 2017, 136: 374-385. [4] HAN L, WANG X D, WU B Q, et al. In-situ synthesis of zeolite X in foam geopolymer as a CO2 adsorbent[J]. Journal of Cleaner Production, 2022, 372: 133591. [5] 冯兴国, 刘 宁, 卢向雨. 复合地聚物固化高含水率泥浆的回填性能及微观机理研究[J]. 硅酸盐通报, 2023, 42(10): 3643-3651. FENG X G, LIU N, LU X Y. Backfilling performance and microscopic mechanism of high moisture content slurry solidified by composite geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3643-3651 (in Chinese). [6] 杨 光, 赵 宇, 朱伶俐, 等. 碱激发偏高岭土基地质聚合物的制备及抗压强度研究[J]. 硅酸盐通报, 2022, 41(3): 894-902. YANG G, ZHAO Y, ZHU L L, et al. Preparation and compressive strength of geopolymer based on alkali activated metakaolin[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 894-902 (in Chinese). [7] 罗 仁, 芦雨薇, 许 源, 等. 改性5A沸石对偏高岭土地聚物微观结构及抗泛碱性能的影响[J]. 硅酸盐通报, 2023, 42(10): 3633-3642. LUO R, LU Y W, XU Y, et al. Effect of modified 5A zeolite on microstructure and efflorescence resistance of metakaolin geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3633-3642 (in Chinese). [8] PUNURAI W, KROEHONG W, SAPTAMONGKOL A, et al. Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste[J]. Construction and Building Materials, 2018, 186: 62-70. [9] 金 宇, 冯伟鹏, 董志君, 等. 辅助胶凝材料玻璃体结构与胶凝活性的研究进展[J]. 材料导报, 2021, 35(3): 3016-3020. JIN Y, FENG W P, DONG Z J, et al. Research progress on the glass structure of supplementary cementitious materials with relation to their hydraulic reactivity[J]. Materials Reports, 2021, 35(3): 3016-3020 (in Chinese). [10] 高黎明, 王永宝, 郭天天, 等. 偏高岭土地聚物力学性能研究进展[J]. 混凝土, 2022(2): 116-120+126. GAO L M, WANG Y B, GUO T T, et al. Research status of mechanical properties of metakaolin geopolymer[J]. Concrete, 2022(2): 116-120+126 (in Chinese). [11] 何卓名, 邹家强, 刘爱华, 等. 液固比及养护机制对偏高岭土基地聚合物流动性和力学性能的影响[J]. 新型建筑材料, 2017, 44(12): 98-101. HE Z M, ZOU J Q, LIU A H, et al. Effect of liquid-solid ratio and maintenance mechanism on flow ability and mechanical properties of metakaolin based geopolymers[J]. New Building Materials, 2017, 44(12): 98-101 (in Chinese). [12] 彭 晖, 李树霖, 蔡春声, 等. 偏高岭土基地质聚合物的配合比及养护条件对其力学性能及凝结时间的影响研究[J]. 硅酸盐通报, 2014, 33(11): 2809-2817+2827. PENG H, LI S L, CAI C S, et al. Study on effect of mix and curing conditions on the mechanical properties and setting time of metakaolin-based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(11): 2809-2817+2827 (in Chinese). [13] YUAN J K, HE P G, JIA D C, et al. Effect of curing temperature and SiO2/K2O molar ratio on the performance of metakaolin-based geopolymers[J]. Ceramics International, 2016, 42(14): 16184-16190. [14] HASNAOUI A, GHORBEL E, WARDEH G. Effect of curing conditions on the performance of geopolymer concrete based on granulated blast furnace slag and metakaolin[J]. Journal of Materials in Civil Engineering, 2021, 33(3): 04020501. [15] ZHANG B F, FENG Y, XIE J H, et al. Rubberized geopolymer concrete: dependence of mechanical properties and freeze-thaw resistance on replacement ratio of crumb rubber[J]. Construction and Building Materials, 2021, 310: 125248. [16] 高志涵, 陈 波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J/OL]. 复合材料学报: 1-11 [2023-09-11]. https://doi.org/10.13801/j.cnki.fhclxb.20230608.001. GAO Z H, CHEN B, CHEN J L, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J/OL]. Acta Materiae Compositae Sinica: 1-11 [2023-09-11]. https://doi.org/10.13801/j.cnki.fhclxb.20230608.001 (in Chinese). [17] YAN D M, XIE L J, QIAN X Q, et al. Compositional dependence of pore structure, strengthand freezing-thawing resistance of metakaolin-based geopolymers[J]. Materials, 2020, 13(13): 2973. [18] ZHAO R D, YUAN Y, CHENG Z Q, et al. Freeze-thaw resistance of Class F fly ash-based geopolymer concrete[J]. Construction and Building Materials, 2019, 222: 474-483. [19] LI F P, CHEN D F, LU Y Y, et al. Influence of mixed fibers on fly ash based geopolymer resistance against freeze-thaw cycles[J]. Journal of Non-Crystalline Solids, 2022, 584: 121517. [20] 张全超, 黄大建, 张小鹏, 等. 高掺量硅灰石纤维对偏高岭土基地聚物性能和微结构的影响[J]. 复合材料学报, 2023, 40(8): 4694-4702. ZHANG Q C, HUANG D J, ZHANG X P, et al. Effect of high wollastonite fiber incorporation on metakaolin base geopolymers' properties and microstructure[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4694-4702 (in Chinese). [21] WALKLEY B, KE X Y, HUSSEIN O H, et al. Incorporation of strontium and calcium in geopolymer gels[J]. Journal of Hazardous Materials, 2020, 382: 121015. [22] JAYA N A, YUN-MING L, CHENG-YONG H, et al. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer[J]. Construction and Building Materials, 2020, 247: 118641. [23] LIU J P, LI X Y, LU Y S, et al. Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer[J]. Construction and Building Materials, 2020, 263: 120653. [24] FENG B W, LIU J S, CHEN Y H, et al. Properties and microstructure of self-waterproof metakaolin geopolymer with silane coupling agents[J]. Construction and Building Materials, 2022, 342: 128045. [25] ROEK P, KRÓL M, MOZGAWA W. Geopolymer-zeolite composites: a review[J]. Journal of Cleaner Production, 2019, 230: 557-579. [26] HOU D S, ZHANG Y, YANG T J, et al. Molecular structure, dynamics, and mechanical behavior of sodium aluminosilicate hydrate (NASH) gel at elevated temperature: a molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2018, 20(31): 20695-20711. [27] 于周平, 杨伟军. 偏高岭土对陶粒混凝土抗冻性能和细观结构的影响[J]. 功能材料, 2021, 52(12): 12203-12209. YU Z P, YANG W J. Effect ofmetakaolin on frost resistance and mesostructure of ceramsite concrete[J]. Journal of Functional Materials, 2021, 52(12): 12203-12209 (in Chinese). [28] WANG X, ZHANG C S, WU Q S, et al. Thermal properties of metakaolin-based geopolymer modified by the silane coupling agent[J]. Materials Chemistry and Physics, 2021, 267: 124655. [29] ZHANG M, XU H Y, PHALÉ ZEZE A L, et al. Coating performance, durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection[J]. Cement and Concrete Composites, 2022, 129: 104495. [30] KOLEYN'SKI A, KRÓL M, YCHOWICZ M. The structure of geopolymers: theoretical studies[J]. Journal of Molecular Structure, 2018, 1163: 465-471. [31] KAYA K, SOYER-UZUN S. Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems[J]. Ceramics International, 2016, 42(6): 7406-7413. [32] ZHU Z Y, WANG Z P, ZHOU Y, et al. Synthesis and structure of calcium silicate hydrate (C-S-H) modified by hydroxyl-terminated polydimethylsiloxane (PDMS)[J]. Construction and Building Materials, 2021, 267: 120731. [33] OZER I, SOYER-UZUN S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios[J]. Ceramics International, 2015, 41(8): 10192-10198. [34] ZHANG C S, WEI M, HU Z C, et al. Sulphate resistance of silane coupling agent reinforced metakaolin geopolymer composites[J]. Ceramics International, 2022, 48(17): 25254-25266. [35] LOUATI S, BAKLOUTI S, SAMET B. Geopolymers based on phosphoric acid and illito-kaolinitic clay[J]. Advances in Materials Science and Engineering, 2016, 2016: 2359759. [36] TAŞDELEN B. Preparation, characterization and drug release properties of polyvinyl alcohol and polyvinyl pyrolidone blended hydrogels[J]. European Journal of Engineering and Applied Sciences, 2018, 1(1): 27-30. [37] ZULKIFLY K, CHENG-YONG H, YUN-MING L, et al. Effect of phosphate addition on room-temperature-cured fly ash-metakaolin blend geopolymers[J]. Construction and Building Materials, 2021, 270: 121486. [38] GUO H Z, YUAN P, ZHANG B F, et al. Realization of high-percentage addition of fly ash in the materials for the preparation of geopolymer derived from acid-activated metakaolin[J]. Journal of Cleaner Production, 2021, 285: 125430. [39] NIE Q K, HU W, HUANG B S, et al. Synergistic utilization of red mud for flue-gas desulfurization and fly ash-based geopolymer preparation[J]. Journal of Hazardous Materials, 2019, 369: 503-511. [40] ZHANG Q C, HUANG D J, ZHANG X P, et al. Improving the properties of metakaolin/fly ash composite geopolymers with ultrafine fly ash ground by steam-jet mill[J]. Construction and Building Materials, 2023, 387: 131673. [41] ZHANG C, WANG G, WU C L, et al. Investigation of hierarchical porous cold bonded lightweight aggregates produced from red mud and solid-waste-based cementitious material[J]. Construction and Building Materials, 2021, 308: 124990. [42] LIU L, HE Z, CAI X H, et al. Application of low-field NMR to the pore structure of concrete[J]. Applied Magnetic Resonance, 2021, 52(1): 15-31. [43] ZHU F L, CHEN M, FENG Q Q. Water distribution within wetted porous fabric exposed to a thermal radiation characterized by low-field nuclear magnetic resonance[J]. Heat and Mass Transfer, 2019, 55(4): 1239-1243. [44] YANG T, ZHU H J, ZHANG Z H. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars[J]. Construction and Building Materials, 2017, 153: 284-293. [45] MASTALI M, KINNUNEN P, DALVAND A, et al. Drying shrinkage in alkali-activated binders: a critical review[J]. Construction and Building Materials, 2018, 190: 533-550. [46] SI R Z, DAI Q L, GUO S C, et al. Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder[J]. Journal of Cleaner Production, 2020, 242: 118502. [47] CHEN S K, RUAN S Q, ZENG Q, et al. Pore structure of geopolymer materials and its correlations to engineering properties: a review[J]. Construction and Building Materials, 2022, 328: 127064. [48] YANG J. Research progress on the influence of geopolymer grouting material properties[J]. Frontiers in Computing and Intelligent Systems, 2022, 1(1): 30-33. [49] XU Z K, YUE J C, PANG G H, et al. Influence of the activator concentration and solid/liquid ratio on the strength and shrinkage characteristics of alkali-activated slag geopolymer pastes[J]. Advances in Civil Engineering, 2021, 2021: 6631316. |
[1] | GUO Qiang, ZHANG Xiaolei, SHI Chenxi, MEN Jie. Mechanical Properties of Red Mud-Slag Based Geopolymer Solidified Loess after Freeze-Thaw Cycle [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1482-1489. |
[2] | XU Cundong, LI Bofei, LI Zhun, WANG Hairuo, CAO Jun, XU Hui. Durability Deterioration Law of Basalt Fiber Concrete under Early Salt-Freezing Coupling Effect [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 816-824. |
[3] | GUO Zirong, YANG Dingyi, CAO Zhonglu, JIA Xiangfeng, ZHAO Jian, CHEN Longxiang, MAO Xiang. High Temperature Performance of Blended Fiber Cement Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 851-865. |
[4] | NING Huiyuan, ZHANG Ju, YAN Changwang, BAI Ru. Prediction and Analysis of Strength Response of Calcium Carbide Slag Excited Coal Gangue Geopolymer Based on Gaussian Process Regression Model [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 905-913. |
[5] | LENG Lingye, ZHANG Pengfei, LIANG Wenwen. Dynamic Compressive Mechanical Behavior of Basalt Fiber Reinforced Geopolymer Concrete under High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 914-921. |
[6] | JIANG Mingshen, LI Fei, ZHOU Li'an, NING Jiarui, ZHANG Zheng. Effects of Sodium Carbonate, Sodium Hydroxide and Water Glass Composite Activation on Properties of Geopolymer Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 929-937. |
[7] | CHEN Shijun, GONG Mulian, LIU Suyi, HUA Sixu, JIN Xiuwei, WANG Hao. Durability of Ternary Geopolymer Grouting Materials Based on Response Surface Methodology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 938-947. |
[8] | CHEN Jiaqi, WANG Jinhua, YAN Shaojun, TIAN Yechenxi, DU Zhiyan, JIANG Shu, HUO Xiaotong. Hydration Properties of Metakaolin Composite Grouting Materials for Anti-Seepage of Grottoes Rock Fissures [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 627-636. |
[9] | ZHANG Haixia, DONG Hao. Drying Shrinkage Performance of Geopolymer Concrete and Shrinkage Compensation of Active MgO [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 219-226. |
[10] | LIU Gang, LI Xincheng, LIU Jinjun, JIAN Shouwei, FAN Lulu, TU Liangliang. Preparation and Hydration Characteristics of Alkali Excited Municipal Solid Waste Incineration Bottom Ash Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 287-294. |
[11] | PAN Rongxiang, YANG Min, YUAN Hong. Effects of Water Reducing Agents on Performance of Red Mud-Fly Ash Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3212-3220. |
[12] | LI Xueliang, ZHAO Qingchao, LI Weiguang, LI Yong, ZHU Yangge, SONG Houbin, YANG Hao, ZHANG Yanping. Influence Mechanism of Coal-Series Metakaolin on Mechanical Properties and Microstructure of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3221-3230. |
[13] | GUO Zhixiang, WANG Qin, ZHANG Qiuchen, ZHENG Haiyu, LIU Kejun. Effect of Fluoride on Structure and Properties of Gypsum-Based Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3248-3257. |
[14] | QIU Wei, KONG Dewen, CUI Gengyin, HUANG Yingying, WANG Lingling. Experimental Study on Performance of Metakaolin-Phosphogypsum-Based Composite Gelling Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3267-3276. |
[15] | CHEN Yongliang, ZHANG Yike, CHEN Tiejun, CHENG Liang, LI Huimin, YANG Zaihua, WANG Quan. Preparation and Mechanism of Foaming Geopolymer with Alkali Activated High Calcium Fly Ash [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2787-2798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||