[1] WIDENER A. Materials genome initiative[J]. Chemical & Engineering News Archive, 2013, 91(31): 25-27. [2] 王海舟, 汪 洪, 丁 洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015, 33(10): 31-49. WANG H Z, WANG H, DING H, et al. Progress in high-throughput materials synthesis and characterization[J]. Science & Technology Review, 2015, 33(10): 31-49 (in Chinese). [3] 赵继成. 材料基因组计划简介[J]. 自然杂志, 2014, 36(2): 89-104. ZHAO J C. A perspective on the materials genome initiative[J]. Chinese Journal of Nature, 2014, 36(2): 89-104 (in Chinese). [4] 卢安贤. 新型功能玻璃材料[M]. 长沙: 中南大学出版社, 2005. LU A X. New functional glass materials[M]. Changsha: Central South University Press, 2005 (in Chinese). [5] 李要辉, 张 凡, 王晋珍, 等. 一种高通量的配料装置及其应用: CN109399238A[P]. 2019-03-01. LI Y H, ZHANG F, WANG J Z, et al. A high-throughput batching device and its application: CN109399238A[P]. 2019-03-01 (in Chinese). [6] 王衍行, 祖成奎, 何 坤, 等. 一种玻璃组分高效筛选系统及方法: CN109867433B[P]. 2021-12-14. WANG Y H, ZU C K, HE K, et al. A high-efficiency screening system and method for glass components: CN109867433B[P]. 2021-12-14 (in Chinese). [7] TAKEUCHI I, LAUTERBACH J, FASOLKA M J. Combinatorial materials synthesis[J]. Materials Today, 2005, 8(10): 18-26. [8] HANAK J J. The “multiple-sample concept” in materials research: synthesis, compositional analysis and testing of entire multicomponent systems[J]. Journal of Materials Science, 1970, 5(11): 964-971. [9] 向 勇, 闫宗楷, 朱焱麟, 等. 材料基因组技术前沿进展[J]. 电子科技大学学报, 2016, 45(4): 634-649. XIANG Y, YAN Z K, ZHU Y L, et al. Progress on materials genome technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 634-649 (in Chinese). [10] 张文宇, 任 群, 王 辉, 等. 材料高通量试验及表征技术研究进展[J]. 中国科技论文, 2023, 18(12): 1283-1298. ZHANG W Y, REN Q, WANG H, et al. Research progress in high-throughput testing and characterization techniques for materials[J]. China Sciencepaper, 2023, 18(12): 1283-1298 (in Chinese). [11] 赵 谦, 祖 群, 齐 亮, 等. 分子动力学模拟预测氧化钠含量对二元钠硅酸盐玻璃弹性模量的影响[J]. 硅酸盐学报, 2018, 46(11): 1558-1567. ZHAO Q, ZU Q, QI L, et al. Prediction of oxide concentration influence on elastic modulus of sodium-silicate glasses by molecular dynamics simulation[J]. Journal of the Chinese Ceramic Society, 2018, 46(11): 1558-1567 (in Chinese). [12] HU Y J, ZHAO G, ZHANG M F, et al. Predicting densities and elastic moduli of SiO2-based glasses by machine learning[J]. NPJ Computational Materials, 2020, 6: 25. [13] LIU H, FU Z P, YANG K, et al. Machine learning for glass science and engineering: a review[J]. Journal of Non-Crystalline Solids, 2021, 557: 119419. [14] 刘 俊, 陈汉生, 杨自豪, 等. 一种连续熔制玻璃粉体的装置: CN209226823U[P]. 2019-08-09. LIU J, CHEN H S, YANG Z H, et al. A device for continuously melting glass powder: CN209226823U[P]. 2019-08-09 (in Chinese). [15] 李要辉, 王晋珍, 张 凡, 等. 铋锌硼玻璃的高通量制备技术研究及性能优选[J]. 建筑玻璃与工业玻璃, 2020, 11: 9-13. LI H Y, WANG J Z, ZHANG F, et al. High throughput preparation technology and performance optimization of bismuth zinc boron glass[J]. Architectural Glass and Functional Glass, 2020, 11: 9-13 (in Chinese). [16] 吴钦霞, 刘莎莎, 杜凤玲, 等. 连续式批量熔制玻璃的高温熔块炉: CN215250386U[P]. 2021-12-21. WU Q X, LIU S S, DU F L, et al. High temperature melting furnace for continuous batch melting of glass: CN215250386U[P]. 2021-12-21 (in Chinese). [17] 王海舟, 贾云海, 赵 雷, 等. 一种组合材料热等静压高通量微制造方法及其包套模具: CN109759594A[P]. 2019-05-17. WANG H Z, JIA Y H, ZHAN L, et al. A Combined material hot isostatic pressing high flux micro manufacturing method and its envelope mold: CN109759594A[P]. 2019-05-17 (in Chinese). [18] 李明星. 非晶合金的高通量制备、表征与性能调控[D]. 中国科学院大学(中国科学院物理研究所), 2019: 21-38. LI M X. Combinatorial method and thermal training on metallic glasses[D]. Beijing: Chinese Academy of Sciences (Institute of Physics CAS), 2019: 21-38 (in Chinese). [19] 杨 玥, 钱 滨, 刘 畅, 等. 激光3D打印玻璃研究进展[J]. 激光与光电子学进展, 2018, 55(1): 011409. YANG Y, QIAN B, LIU C, et al. Progress in 3D laser printing of glass[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011409 (in Chinese). [20] 蒲以松, 王宝奇, 张连贵. 金属3D打印技术的研究[J]. 表面技术, 2018, 47(3): 78-84. PU Y S, WANG B Q, ZHANG L G. Metal 3D printing technology[J]. Surface Technology, 2018, 47(3): 78-84 (in Chinese). [21] RAO J H, ZHANG Y, FANG X Y, et al. The origins for tensile properties of selective laser melted aluminium alloy A357[J]. Additive Manufacturing, 2017, 17: 113-122. [22] YADROITSEV I, BERTRAND P, SMUROV I. Parametric analysis of the selective laser melting process[J]. Applied Surface Science, 2007, 253(19): 8064-8069. [23] LUO J J, PAN H, KINZEL E C. Additive manufacturing of glass[J]. Journal of Manufacturing Science and Engineering, 2014, 136(6): 061024. [24] LUO J J, GILBERT L J, BRISTOW D A, et al. Additive manufacturing of glass for optical applications[C]//Laser 3D Manufacturing III, SPIE Proceedings. San Francisco, California, USA. SPIE, 2016. [25] KLOCKE F, MCCLUNG A, ADER C. Direct laser sintering of borosilicate glass[J]. International Solid Freeform Fabrication Symposium, 2004: 214-219. [26] SPIRRETT F, DATSIOU K C, MAGALLANES M, et al. Powder-fed directed energy deposition of soda lime silica glass on glass substrates[J]. Journal of the American Ceramic Society, 2023, 106(1): 227-240. [27] 王潘奕, 蔡沐之, 华有杰, 等. 放电等离子烧结技术制备光功能玻璃及玻璃陶瓷[J]. 激光与光电子学进展, 2022, 59(15): 1516014. WANG P Y, CAI M Z, HUA Y J, et al. Optical functional glass and glass-ceramics processed by spark plasma sintering[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516014 (in Chinese). [28] WANG L J, ZHANG J F, JIANG W. Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2013, 39: 103-112. [29] DUDINA D V, BOKHONOV B B, OLEVSKY E A. Fabrication of porous materials by spark plasma sintering: a review[J]. Materials, 2019, 12(3): 541. [30] HU Z Y, ZHANG Z H, CHENG X W, et al. A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications[J]. Materials & Design, 2020, 191: 108662. [31] ABEDI M, SOVIZI S, AZARNIYA A, et al. An analytical review on Spark Plasma Sintering of metals and alloys: from processing window, phase transformation, and property perspective[J]. Critical Reviews in Solid State & Material Sciences, 2023, 48(2): 169-214. [32] FRENKEL J. Viscous flow of crystalline bodies under the action of surface tension[J]. Journal of Physics(USS R), 1945, 9(5): 385. [33] BORDIA R K, KANG S J L, OLEVSKY E A. Current understanding and future research directions at the onset of the next century of sintering science and technology[J]. Journal of the American Ceramic Society, 2017, 100(6): 2314-2352. [34] RAMOND L, BERNARD-GRANGER G, ADDAD A, et al. Sintering of soda-lime glass microspheres using spark plasma sintering[J]. Journal of the American Ceramic Society, 2011, 94(9): 2926-2932. [35] WANG L J, JIANG W, CHEN L D, et al. Formation of a unique glass by spark plasma sintering of a zeolite[J]. Journal of Materials Research, 2009, 24(10): 3241-3245. [36] 邱建荣, 徐 诚, 刘小峰. 悬浮法制备新型功能玻璃[J]. 硅酸盐学报, 2018, 46(1): 11-20. QIU J R, XU C, LIU X F. Novel functional glasses fabricated by containerless processing[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 11-20 (in Chinese). [37] VIJAYA KUMAR M, ISHIKAWA T, BASAVALINGU B, et al. Thermal and optical properties of glass and crystalline phases formed in the binary R2O3-Al2O3 (R=La-Lu and Y) system[J]. Journal of Applied Physics, 2013, 113(19): 193503. [38] XU C, WANG C Y, YU J D, et al. Structure and optical properties of Er-doped CaO-Al2O3 (Ga2O3) glasses fabricated by aerodynamic levitation[J]. Journal of the American Ceramic Society, 2017, 100(7): 2852-2858. [39] SKINNER L B, BARNES A C, SALMON P S, et al. Phase separation, crystallization and polyamorphism in the Y2O3-Al2O3 system[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2008, 20(20): 205103. [40] UZAKBAIULY B, MUKANOVA A, ZHANG Y G, et al. Physical vapor deposition of cathode materials for all solid-state Li ion batteries: a review[J]. Frontiers in Energy Research, 2021, 9: 625123. [41] FLOROIAN L, SAVU B, SIMA F, et al. Synthesis and characterization of bioglass thin films[J]. Digest Journal of Nanomaterials and Biostructures, 2007, 2(3): 285-291. [42] KUMAR V, SINGH S K, SHARMA H, et al. Investigation of structural and optical properties of ZnO thin films of different thickness grown by pulsed laser deposition method[J]. Physica B: Condensed Matter, 2019, 552: 221-226. [43] 闫宗楷. VIA族化合物新能源材料掺杂效应的高通量实验研究[D]. 成都: 电子科技大学, 2019: 22-54. YAN Z K, High-throughput experimentation on doping effects of via group compounds for energy applications[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 22-54 (in Chinese). |