[1] 熊 柳. 低碳经济下冶金工程技术的发展现状研究[J]. 中国金属通报, 2022(22): 1-3. XIONG L. Research on development status of metallurgical engineering technology in low-carbon economy[J]. China Metal Bulletin, 2022(22): 1-3 (in Chinese). [2] 郭学益, 陈远林, 田庆华, 等. 氢冶金理论与方法研究进展[J]. 中国有色金属学报, 2021, 31(7): 1891-1906. GUO X Y, CHEN Y L, TIAN Q H, et al. Research progress on hydrogen metallurgy theory and method[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(7): 1891-1906 (in Chinese). [3] 刘志国, 回士旭. 氢冶金原理及工业化应用研究进展[J]. 中国金属通报, 2021(9): 5-6. LIU Z G, HUI S X. Research progress of hydrogen metallurgy principle and industrial application[J]. China Metal Bulletin, 2021(9): 5-6 (in Chinese). [4] WANG R R, ZHAO Y Q, BABICH A, et al. Hydrogen direct reduction (H-DR) in steel industry: an overview of challenges and opportunities[J]. Journal of Cleaner Production, 2021, 329: 129797. [5] LIU Z J, LU S F, WANG Y Z, et al. Study on optimization of reduction temperature of hydrogen-based shaft furnace: numerical simulation and multi-criteria evaluation[J]. International Journal of Hydrogen Energy, 2023, 48(42): 16132-16142. [6] TANG J, CHU M S, LI F, et al. Development and progress on hydrogen metallurgy[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 713-723. [7] BAI M H, LONG H, REN S B, et al. Reduction behavior and kinetics of iron ore pellets under H2-N2 atmosphere[J]. ISIJ International, 2018, 58(6): 1034-1041. [8] NAGASAKA T, HINO M, BAN-YA S. Interfacial kinetics of hydrogen with liquid slag containing iron oxide[J]. Metallurgical and Materials Transactions B, 2000, 31(5): 945-955. [9] 方 觉. 非高炉炼铁工艺与理论[M]. 北京: 冶金工业出版社, 2002: 1-62. FANG J. Non-blast furnace ironmaking technology and theory[M]. Beijing: Metallurgical Industry Press, 2002: 1-62 (in Chinese). [10] 葛俊礼. 气基直接还原竖炉炉内行为与炉型关系研究[D]. 秦皇岛: 燕山大学, 2014. GE J L. Study on the relationship between furnace behavior and furnace type in gas-based direct reduction shaft furnace[D].Qinhuangdao: Yanshan University, 2014 (in Chinese). [11] 周 颖, 周红军, 徐春明. 中国钢铁工业低碳绿色生产氢源思考与探索[J]. 化工进展, 2022, 41(2): 1073-1077. ZHOU Y, ZHOU H J, XU C M. Exploration of hydrogen sources for the low-carbon and green production in the steel industry in China[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1073-1077 (in Chinese). [12] 于国瀚, 崔竞文, 赵 飞, 等. 氢基竖炉用耐火材料服役环境模拟及设计[J]. 硅酸盐学报, 2023, 51(3): 619-627. YU G H, CUI J W, ZHAO F, et al. Service environment simulation and design of refractory for hydrogen-based shaft furnace[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 619-627 (in Chinese). [13] SANG S B, PU J, JIANG S P, et al. Prediction of H2 leak rate in mica-based seals of planar solid oxide fuel cells[J]. Journal of Power Sources, 2008, 182(1): 141-144. [14] BONALDE A, HENRIQUEZ A, MANRIQUE M. Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent[J]. ISIJ International, 2005, 45(9): 1255-1260. [15] 韩行禄, 刘景林. 耐火材料应用[M]. 北京: 冶金工业出版社, 1986. HAN X L, LIU J L. Application of refractory materials[M]. Beijing: Metallurgical Industry Press, 1986 (in Chinese). [16] LI Y, CHEN L, HONG L, et al. Fabrication of porous silicon carbide ceramics at low temperature using aluminum dihydrogen phosphate as binder[J]. Journal of Alloys and Compounds, 2019, 785: 838-845. [17] ROUSSEAU G, MONTAGNE L, MÉAR F O. Further insights on the thermal degradation of aluminum metaphosphate prepared from aluminum dihydrogen phosphate solution[J]. Journal of the European Ceramic Society, 2021, 41(9): 4970-4976. [18] 王治峰, 马淑龙, 任 博, 等. 红柱石原料高温结构演变及抗钾蒸气侵蚀行为研究[J]. 硅酸盐通报, 2023, 42(3): 1106-1114. WANG Z F, MA S L, REN B, et al. Microstructural evolution of andalusite at elevated temperature and its potassium vapor attack resistance behavior[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 1106-1114 (in Chinese). [19] 李柳生, 廖桂华, 徐国辉. 烧成温度和保温时间对红柱石基耐火材料莫来石化行为的影响[J]. 硅酸盐通报, 2007, 26(6): 1229-1232+1239. LI L S, LIAO G H, XU G H. Effect of firing temperature and soaking time on mollitization of andalusite based refractory[J]. Bulletin of the Chinese Ceramic Society, 2007, 26(6): 1229-1232+1239 (in Chinese). [20] MONDAL K, LORETHOVA H, HIPPO E, et al. Reduction of iron oxide in carbon monoxide atmosphere: reaction controlled kinetics[J]. Fuel Processing Technology, 2004, 86(1): 33-47. [21] BONALDE A, HENRIQUEZ A, MANRIQUE M. Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent[J]. ISIJ International, 2005, 45(9): 1255-1260. [22] XU M W P, BROWN J J Jr. Mechanism of iron catalysis of carbon monoxide decomposition in refractories[J]. Journal of the American Ceramic Society, 1989, 72(1): 110-115. [23] ASTM. Standard test method for disintegration of refractories in an atmosphere of carbon monoxide: C288-87[S]. PA: ASTM, 2014. [24] British Standards Institution. Methods of testing refractory materials, general and textural properties, determination of resistance to carbon monoxide: BS 1902-3[S]. Britain: GB-BSI, 1988. |