[1] GAO X B, ZHOU Q S, WANG Y L, et al. Coal fly ash resource utilization: structure of siloxy group of high-modulus sodium silicate solution[J]. Process Safety and Environmental Protection, 2023, 171: 396-404. [2] KORDE C, CRUICKSHANK M, WEST R P, et al. Activated slag as partial replacement of cement mortars: effect of temperature and a novel admixture[J]. Construction and Building Materials, 2019, 216: 506-524. [3] 高振广, 陈得友, 李 振, 等. 用固硫灰渣制备二氧化硅凝胶研究[J]. 粉煤灰, 2015, 27(6)24-26 GAO Z G, CHEN D Y, LI Z, et al. Study of preparation of silica gel with solid sulfur slag[J]. Coal Ash, 2015, 27(6): 24-26 (in Chinese). [4] LI J J, CAO S, YILMAZ E, et al. Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(2): 345-355. [5] NHUCHHEN D R, SIT S P, LAYZELL D B. Decarbonization of cement production in a hydrogen economy[J]. Applied Energy, 2022, 317: 119180. [6] CORMOS C C. Decarbonization options for cement production process: a techno-economic and environmental evaluation[J]. Fuel, 2022, 320: 123907. [7] MARDANI-AGHABAGLOU A, KARAKUZU K, KOBYA V, et al. Durability performance and dimensional stability of road concrete containing dry-shake surface hardener admixture[J]. Construction and Building Materials, 2021, 274: 121789. [8] LI B X, LI L, CHEN X, et al. Modification of phosphogypsum using circulating fluidized bed fly ash and carbide slag for use as cement retarder[J]. Construction and Building Materials, 2022, 338: 127630. [9] YANG Y, ZHANG Y, LI S J, et al. Numerical simulation of low nitrogen oxides emissions through cement precalciner structure and parameter optimization[J]. Chemosphere, 2020, 258: 127420. [10] 王 巍, 王 昭, 任思谦, 等. 无机激发剂与固硫灰渣的协同激发在水泥掺和料中的应用研究[J]. 陕西科技大学学报, 2023, 41(3): 131-137. WANG W, WANG Z, REN S Q, et al. Study on the application of synergistic excitation of inorganic activator and sulfur-fixing ash in cement admixture[J]. Journal of Shaanxi University of Science & Technology, 2023, 41(3): 131-137 (in Chinese). [11] 汤青青, 张丽娟, 孙国文, 等. 三乙醇胺-氢氧化钙对大掺量粉煤灰水泥胶凝体系早期活性激发[J]. 硅酸盐通报, 2018, 37(9): 2737-2742. TANG Q Q, ZHANG L J, SUN G W, et al. Early activity of triethanolamine-calcium hydroxide activates to high volume fly ash in cement-gel system[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2737-2742 (in Chinese). [12] FALK J, SKOGLUND N, GRIMM A, et al. Systematic evaluation of the fate of phosphorus in fluidized bed combustion of biomass and sewage sludge[J]. Energy & Fuels, 2020, 34(4): 3984-3995. [13] BEDNARSKA D, WIECZOREK A, KONIORCZYK M. The effect of bleeding on ice formation and water transport in blended cement systems[J]. Construction and Building Materials, 2022, 324: 126674. [14] 常 悦, 薛利国, 李 燕, 等. 碳酸盐激发胶凝材料性能优化及其在铅锌矿尾砂胶结充填中的应用[J]. 有色金属工程, 2022, 12(9): 128-135. CHANG Y, XUE L G, LI Y, et al. Research on the modification of carbonate-activated binders and the utilization in lead/zinc mine tailings based cemented paste backfill[J]. Nonferrous Metals Engineering, 2022, 12(9): 128-135 (in Chinese). [15] 董耀武, 孙振平, 周晓阳, 等. 三乙醇胺和三聚磷酸钠助磨剂对水泥颗粒表面性质的影响[J]. 建筑材料学报, 2022, 25(7): 722-729. DONG Y W, SUN Z P, ZHOU X Y, et al. Effect of triethanolamine and sodium tripolyphosphate as grinding aids on the surface properties of cement particle[J]. Journal of Building Materials, 2022, 25(7): 722-729 (in Chinese). |