[1] 王贵玲. 开发地热新能源,构建清洁低碳、安全高效的能源体系[J]. 地质学报, 2020, 94(7): 1921-1922. WANG G L. Develop new geothermal energy and build a clean, low-carbon, safe and efficient energy system[J]. Acta Geologica Sinica, 2020, 94(7): 1921-1922 (in Chinese). [2] 刘 江. 太原西温庄中深层地热开发过程多场耦合数值模拟研究[D]. 徐州: 中国矿业大学, 2021. LIU J. Numerical simulation research on multi-field coupling of middle-deep geothermal development process in Xiwenzhuang Taiyuan[D]. Xuzhou: China University of Mining and Technology, 2021 (in Chinese). [3] 李瑞霞, 王高升, 宋先知, 等. 固井水泥对同轴型换热系统取热效果影响数值分析[J]. 建筑科学, 2018, 34(4): 36-40. LI R X, WANG G S, SONG X Z, et al. Numerical analysis of the effect of cement sheath on the heat extraction performance of coaxial borehole heat exchangers geothermal system[J]. Building Science, 2018, 34(4): 36-40 (in Chinese). [4] SONG X Z, WANG G S, SHI Y, et al. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 2018, 164: 1298-1310. [5] 张丰琰, 李立鑫, 韩丽丽. 保温水泥在中低温地热井中的应用及建议[J]. 地质与勘探, 2022, 58(2): 410-419. ZHANG F Y, LI L X, HAN L L. Application and suggestions of the thermal insulation cement in mid-low temperature geothermal wells[J]. Geology and Exploration, 2022, 58(2): 410-419 (in Chinese). [6] SONG X Z, ZHENG R, LI R X, et al. Study on thermal conductivity of cement with thermal conductive materials in geothermal well[J]. Geothermics, 2019, 81: 1-11. [7] YANG Y, WANG K P, ZHANG H, et al. Investigation on the preparation, properties, and microstructure of high thermal conductive cementing material in 3 500 m-deep geothermal well[J]. Geothermics, 2022, 100: 102322. [8] WANG S, LI Y J, WU L Y, et al. Investigation on thermal conductivity property and hydration mechanism of graphene-composite cement for geothermal exploitation[J]. Geothermics, 2022, 104: 102477. [9] ABID K, SRIVASTAVA S, TELLEZ M L R, et al. Experimental and machine learning study of thermal conductivity of cement composites for geothermal wells[J]. Geothermics, 2023, 110: 102659. [10] ZHAO H T, FAN G C, WEI Z Z, et al. Investigation of thermal conductivity and related parameters of early-age cement paste[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119798. [11] 方 姚, 张 勇, 冉真真. 中深层地热井固井导热水泥导热系数研究[J]. 材料导报, 2020, 34(20): 20028-20033+20052. FANG Y, ZHANG Y, RAN Z Z. Thermal conductivity of cementing conductive cement in medium and deep geothermal well[J]. Materials Reports, 2020, 34(20): 20028-20033+20052 (in Chinese). [12] 张有斌, 张文琮, 李叶枢, 等. 基于响应面法的高原红土固化性能试验研究[J]. 材料导报, 2023, 37(S1): 259-264. ZHANG Y B, ZHANG W C, LI Y S, et al. Experimental of consolidation performance of laterite in plateau based on RSM[J]. Materials Reports, 2023, 37(S1): 259-264 (in Chinese). [13] 李慢飞. 基于响应面法的水泥混凝土路面抗滑涂层的研究[D]. 广州: 华南理工大学, 2021. LI M F. Study on anti-skid coating of cement concrete pavement based on response surface method[D].Guangzhou: South China University of Technology, 2021 (in Chinese). [14] 蹇黎明. 地热钻采石墨烯复合水泥材料固结导热特性与机理研究[D]. 成都: 成都理工大学, 2021. JIAN L M. Study on consolidation heat conduction characteristics and mechanism of graphene composite cement material by geothermal drilling and mining[D].Chengdu: Chengdu University of Technology, 2021 (in Chinese). [15] WANG S, JIAN L M, SHU Z H, et al. A high thermal conductivity cement for geothermal exploitation application[J]. Natural Resources Research, 2020, 29(6): 3675-3687. [16] 杨志全, 朱红霖. 碳纳米管对水泥基材料微观结构及抗碳化性能的影响研究[J]. 功能材料, 2023, 54(8): 8217-8227. YANG Z Q, ZHU H L. Study on the effect of carbon nanotubes on the microstructure and anti-carbonation properties of cement-based materials[J]. Journal of Functional Materials, 2023, 54(8): 8217-8227 (in Chinese). [17] JING G J, XU K L, FENG H R, et al. The non-uniform spatial dispersion of graphene oxide: a step forward to understand the inconsistent properties of cement composites[J]. Construction and Building Materials, 2020, 264: 120729. [18] VILELA ROCHA V, LUDVIG P, CONSTÂNCIO TRINDADE A C, et al. The influence of carbon nanotubes on the fracture energy, flexural and tensile behavior of cement based composites[J]. Construction and Building Materials, 2019, 209: 1-8. [19] HAWREEN A, BOGAS J A, DIAS A P S. On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes[J]. Construction and Building Materials, 2018, 168: 459-470. [20] 张兰芳, 刘丽娜, 曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 材料导报, 2017, 31(24): 15-19. ZHANG L F, LIU L N, CAO S. Optimization of alkali activated slag-limestone powder mortar by response surface methodology[J]. Materials Review, 2017, 31(24): 15-19 (in Chinese). [21] 魏凯伦, 赵卫全, 樊恒辉. 基于响应面法的硅溶胶注浆材料配比优化研究[J]. 硅酸盐通报, 2022, 41(6): 2015-2023. WEI K L, ZHAO W Q, FAN H H. Proportion optimization of silica sol grout based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2015-2023 (in Chinese). [22] 夏修建. 高温深井固井用聚合物/纳米SiO2复合添加剂的研究[D]. 天津: 天津大学, 2017. XIA X J. Study on polymer/nano-SiO2 composite additive for high temperature deep well cementing[D].Tianjin: Tianjin University, 2017 (in Chinese). [23] 商 勇, 李 坤, 史鸿祥. 低密度水泥浆固井技术研究与应用[J]. 钻井液与完井液, 2004, 21(4): 34-36. SHANG Y, LI K, SHI H X. Study and application of light-weight cement slurry technology[J]. Driuing Fluid and Completion Fluld, 2004, 21(4): 34-36 (in Chinese). [24] 杨 燕, 李路宽, 朱宽亮, 等. 稠油热采硅酸盐水泥抗高温技术研究进展[J]. 科学技术与工程, 2022, 22(1): 39-49. YANG Y, LI L K, ZHU K L, et al. Research progress on high temperature Portland cement for heavy oil thermal recovery[J]. Science Technology and Engineering, 2022, 22(1): 39-49 (in Chinese). [25] SHA S N, MA Y H, LEI L, et al. Effect of polycarboxylate superplasticizers on the growth of ettringite in deionized water and synthetic cement pore solution[J]. Construction and Building Materials, 2022, 341: 127602. |