BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (2): 387-396.
Special Issue: 水泥混凝土
• Cement and Concrete • Next Articles
JIANG Demin, XU Haodong, KANG Honglong, HU Siyu
Received:
2023-09-21
Revised:
2023-11-20
Online:
2024-02-15
Published:
2024-02-05
CLC Number:
JIANG Demin, XU Haodong, KANG Honglong, HU Siyu. Problems Faced by Plant Fiber Reinforced Cement-Based Composites and Research Status of Its Related Modification[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 387-396.
[1] 饶德梅. 不同烧成温度和时间对水泥熟料矿物相组成的影响[D]. 绵阳: 西南科技大学, 2023. RAO D M. Effect of different sintering temperature and time on mineral phase composition of cement clinker[D]. Mianyang: Southwest University of Science and Technology, 2023 (in Chinese). [2] 宋丁豹, 蒲诃夫, 胡海蓝, 等. 水平排水板真空预压-碱激发矿渣固化联合法处理高含水率淤泥的试验研究[J/OL]. 岩石力学与工程学报: 1-11 [2023-08-31]. https://doi.org/10.13722/j.cnki.jrme.2023.0040. SONG D B, PU K F, HU H L, et al. Experimental investigation on prefabricated horizontal drain-based vacuum preloading-alkali-activated GGBS solidification combined method for treatment of high-water-content mud slurry[J/OL]. Chinese Journal of Rock Mechanics and Engineering: 1-11 [2023-08-31]. http://doi.org/10.13722/j.cnki.jrme.2023.0044 (in Chinese). [3] 李东升, 吴国立, 冯思超. 纤维增强水泥基复合材料力学性能的研究进展[J]. 河南科技, 2023, 42(2): 89-92. LI D S, WU G L, FENG S C. Research progress on mechanical properties of fiber reinforced cement-based composites[J]. Henan Science and Technology, 2023, 42(2): 89-92 (in Chinese). [4] TIAN H, ZHANG Y X. The influence of bagasse fibre and fly ash on the long-term properties of green cementitious composites[J]. Construction and Building Materials, 2016, 111: 237-250. [5] 曹双平, 王 戈, 余 雁, 等. 几种植物单根纤维力学性能对比[J]. 南京林业大学学报(自然科学版), 2010, 34(5): 87-90. CAO S P, WANG G, YU Y, et al. Comparison of mechanical properties of different single vegetable fibers[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2010, 34(5): 87-90 (in Chinese). [6] 杨 玲. 改性稻草秸秆水泥基复合材料的性能研究[D]. 武汉: 武汉轻工大学, 2020. YANG L. Study on properties of modified rice straw cement-based composites[D]. Wuhan: Wuhan Polytechnic University, 2020 (in Chinese). [7] PRAVEENA B A, BURADI A, SANTHOSH N, et al. Study on characterization of mechanical, thermal properties, machinability and biodegradability of natural fiber reinforced polymer composites and its applications, recent developments and future potentials: a comprehensive review[J]. Materials Today: Proceedings, 2022, 52: 1255-1259. [8] 房 新. 乙酰化稻草的制备及其力学性能研究[D]. 沈阳: 东北大学, 2010. FANG X. Preparation and mechanical properties of acetylated rice straw[D]. Shenyang: Northeastern University, 2010 (in Chinese). [9] JIANG D M, AN P H, CUI S P, et al. Effect of modification methods of wheat straw fibers on water absorbency and mechanical properties of wheat straw fiber cement-based composites[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-14. [10] CAMARGO M, ADEFRS T E, ROETHER J, et al. A review on natural fiber-reinforced geopolymer and cement-based composites[J]. Materials, 2020, 13(20): 4603. [11] 姜 欢. 稻草纤维生产水泥基泡沫保温墙体材料的研究[D]. 大连: 大连理工大学, 2008. JIANG H. Study on the production of cement-based foam thermal insulation wall material with straw fiber[D]. Dalian: Dalian University of Technology, 2008 (in Chinese). [12] 杨政险, 李 慷, 张 勇, 等. 天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J]. 硅酸盐学报, 2022, 50(2): 522-532. YANG Z X, LI K, ZHANG Y, et al. Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J]. Journal of the Chinese Ceramic Society, 2022, 50(2): 522-532 (in Chinese). [13] ALI-BOUCETTA T, AYAT A, LAIFA W, et al. Treatment of date palm fibres mesh: influence on the rheological and mechanical properties of fibre-cement composites[J]. Construction and Building Materials, 2021, 273: 121056. [14] ROCHA D L, AZEVEDO A R G, MARVILA M T, et al. Influence of different methods of treating natural açai fibre for mortar in rural construction[J]. 2021. [15] PAGE J, KHADRAOUI F, GOMINA M, et al. Influence of different surface treatments on the water absorption capacity of flax fibres: rheology of fresh reinforced-mortars and mechanical properties in the hardened state[J]. Construction and Building Materials, 2019, 199: 424-434. [16] CHOKSHI S, PARMAR V, GOHIL P, et al. Chemical composition and mechanical properties of natural fibers[J]. Journal of Natural Fibers, 2022, 19(10): 3942-3953. [17] WEI J Q, MEYER C. Degradation mechanisms of natural fiber in the matrix of cement composites[J]. Cement and Concrete Research, 2015, 73: 1-16. [18] TOLÊDO F R D, SCRIVENER K, ENGLAND G L, et al. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites[J]. Cement and Concrete Composites, 2000, 22(2): 127-143. [19] BURGERT I, KEPLINGER T. Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis[J]. Journal of Experimental Botany, 2013, 64(15): 4635-4649. [20] BAKAR N, CHIN S C, SIREGAR J P, et al. A review on physical, mechanical, thermal properties and chemical composition of plant fibers[J]. IOP Conference Series: Materials Science and Engineering, 2020, 736(5): 052017. [21] ABU G M, ABDELRASOUL A. Compressive and fracture toughness of natural and synthetic fiber-reinforced polymer[M]//Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Amsterdam: Elsevier, 2019: 123-140. [22] YE Z L, BERSON R E. Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes[J]. Bioresource Technology, 2014, 167: 582-586. [23] DJAFARI P S R. Physical and mechanical properties of natural fibers[M]//Advanced High Strength Natural Fibre Composites in Construction. Amsterdam: Elsevier, 2017: 59-83. [24] MWAIKAMBO L Y, ANSELL M P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II. Sisal fibres[J]. Journal of Materials Science, 2006, 41(8): 2497-2508. [25] DRIDI M, HACHEMI S, BELKADI A A. Influence of styrene-butadiene rubber and pretreated hemp fibers on the properties of cement-based repair mortars[J]. European Journal of Environmental and Civil Engineering, 2023, 27(1): 538-557. [26] AZWA Z N, YOUSIF B F, MANALO A C, et al. A review on the degradability of polymeric composites based on natural fibres[J]. Materials & Design, 2013, 47: 424-442. [27] ZHOU J W, LIN S T, ZENG H X, et al. Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels[J]. Materials Horizons, 2020, 7(11): 2936-2943. [28] MOHAMMED M, JAWAD A J M, MOHAMMED A M, et al. Challenges and advancement in water absorption of natural fiber-reinforced polymer composites[J]. Polymer Testing, 2023, 124: 108083. [29] METHACANON P, WEERAWATSOPHON U, SUMRANSIN N, et al. Properties and potential application of the selected natural fibers as limited life geotextiles[J]. Carbohydrate Polymers, 2010, 82(4): 1090-1096. [30] ETALE A, ONYIANTA A J, TURNER S R, et al. Cellulose: a review of water interactions, applications in composites, and water treatment[J]. Chemical Reviews, 2023, 123(5): 2016-2048. [31] JONGVISUTTISUN P, LEISEN J, KURTIS K E. Key mechanisms controlling internal curing performance of natural fibers[J]. Cement and Concrete Research, 2018, 107: 206-220. [32] BUI H, LEVACHER D, BOUTOUIL M, et al. Effects of wetting and drying cycles on microstructure change and mechanical properties of coconut fibre-reinforced mortar[J]. Journal of Composites Science, 2022, 6(4): 102. [33] TOLEDO F R D, DE-ANDRADE S F, FAIRBAIRN E M R, et al. Durability of compression molded sisal fiber reinforced mortar laminates[J]. Construction and Building Materials, 2009, 23(6): 2409-2420. [34] JOHN V M, CINCOTTO M A, SJÖSTRÖM C, et al. Durability of slag mortar reinforced with coconut fibre[J]. Cement and Concrete Composites, 2005, 27(5): 565-574. [35] CHOI Y C. Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites[J]. Case Studies in Construction Materials, 2022, 17: e01690. [36] SEDAN D, PAGNOUX C, SMITH A, et al. Mechanical properties of hemp fibre reinforced cement: influence of the fibre/matrix interaction[J]. Journal of the European Ceramic Society, 2008, 28(1): 183-192. [37] CHOI H, CHOI Y C. Setting characteristics of natural cellulose fiber reinforced cement composite[J]. Construction and Building Materials, 2021, 271: 121910. [38] CLARAMUNT J, ARDANUY M, GARCÍA H J A. Effect of drying and rewetting cycles on the structure and physicochemical characteristics of softwood fibres for reinforcement of cementitious composites[J]. Carbohydrate Polymers, 2010, 79(1): 200-205. [39] ARIVENDAN A, JAPPES W, IRULAPASAMY S, et al. Extraction and characterization of natural aquatic plant fiber, powder and ash from water hyacinth (eichhornia crassipes) as reinforcement of fiber, powder, and ash reinforced polymer composite[J]. Journal of Natural Fibers, 2022, 19(14): 9589-9599. [40] CLARAMUNT J, ARDANUY M, GARCÍA H J A, et al. The hornification of vegetable fibers to improve the durability of cement mortar composites[J]. Cement and Concrete Composites, 2011, 33(5): 586-595. [41] FERREIRA S R, LIMA P R L, SILVA F A, et al. Effect of sisal fiber hornification on the fiber-matrix bonding characteristics and bending behavior of cement based composites[J]. Key Engineering Materials, 2014, 600: 421-432. [42] ALI M R, ABDULLAH U H, ASHAARI Z, et al. Hydrothermal modification of wood: a review[J]. Polymers, 2021, 13(16): 2612. [43] REZAYATI C P, MOHAMMADI R J, Mohebi B, et al. Influence of hydrothermal treatment on the dimensional stability of beech wood[J]. 2007, 2: 125-131. [44] SELLAMI A, MERZOUD M, AMZIANE S. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers[J]. Construction and Building Materials, 2013, 47: 1117-1124. [45] NORUL I M A, PARIDAH M T, ANWAR U M K, et al. Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers[J]. Composites Part B: Engineering, 2013, 45(1): 1251-1257. [46] KABIR M M, WANG H, LAU K T, et al. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview[J]. Composites Part B: Engineering, 2012, 43(7): 2883-2892. [47] JOSEPH P V, JOSEPH K, THOMAS S, et al. The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(3): 253-266. [48] LI Q, IBRAHIM L, ZHOU W M, et al. Treatment methods for plant fibers for use as reinforcement in cement-based materials[J]. Cellulose, 2021, 28(9): 5257-5268. [49] NAMONDO B V, ETAPE E P, FOBA T J. Raffia hookeri fiber: effect of alkali treatment on morphology, composition and technological application properties[J]. Journal of Modern Polymer Chemistry and Materials, 2023: 2-3. [50] DE-SOUZA C R, DE-SOUZA L M S, SOUTO F, et al. Effect of alkali treatment on physical-chemical properties of sisal fibers and adhesion towards cement-based matrices[J]. Construction and Building Materials, 2022, 345: 128363. [51] TELI M D, VALIA S P. Acetylation of Jute fiber to improve oil absorbency[J]. Fibers and Polymers, 2013, 14(6): 915-919. [52] ZAMAN H U, KHAN R A. Acetylation used for natural fiber/polymer composites[J]. Journal of Thermoplastic Composite Materials, 2021, 34(1): 3-23. [53] BLEDZKI A K, MAMUN A A, LUCKA G M, et al. The effects of acetylation on properties of flax fibre and its polypropylene composites[J]. Express Polymer Letters, 2008, 2(6): 413-422. [54] OLADELE I O, MICHAEL O S, ADEDIRAN A A, et al. Acetylation treatment for the batch processing of natural fibers: effects on constituents, tensile properties and surface morphology of selected plant stem fibers[J]. Fibers, 2020, 8(12): 73. [55] MOKALOBA N, BATANE R. The effects of mercerization and acetylation treatments on the properties of sisal fiber and its interfacial adhesion characteristics on polypropylene[J]. International Journal of Engineering, Science and Technology, 2014, 6(4): 83. [56] BLEDZKI A K, MAMUN A A, JASZKIEWICZ A, et al. Polypropylene composites with enzyme modified abaca fibre[J]. Composites Science and Technology, 2010, 70(5): 854-860. [57] RIDER A N, ARNOTT D R. Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding[J]. International Journal of Adhesion and Adhesives, 2000, 20(3): 209-220. [58] XIE Y J, HILL C A S, XIAO Z F, et al. Silane coupling agents used for natural fiber/polymer composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(7): 806-819. [59] GAO Y A, CHEN Y, GAO J Q, et al. Properties of Arenga engleri becc palm fiber particles with silane coupling agent KH570 treatments for application in polymer/cement composites[J]. Journal of Natural Fibers, 2022, 19(14): 7348-7362. [60] CASTELLANO M, GANDINI A, FABBRI P, et al. Modification of cellulose fibres with organosilanes: under what conditions does coupling occur?[J]. Journal of Colloid and Interface Science, 2004, 273(2): 505-511. [61] KOOHESTANI B, DARBAN A K, MOKHTARI P, et al. Comparison of different natural fiber treatments: a literature review[J]. International Journal of Environmental Science and Technology, 2019, 16(1): 629-642. [62] BAN Y, ZHI W, FEI M G, et al. Preparation and performance of cement mortar reinforced by modified bamboo fibers[J]. Polymers, 2020, 12(11): 2650. |
[1] | ZHU Haohua, YANG Li, LIU Jianhui, SHI Caijun. Effect of Poplar Fiber on Flowability, Mechanical Property and Auto-Shrinkage of Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 487-494. |
[2] | ZHU Yinyuan, ZHU Ganyu, QI Fang, LI Huiquan, CHEN Yan, LI Shaopeng, GUO Yanxia. Research Progress on Preparation and Comprehensive Utilization of Solid Waste Based Calcium Silicate Hydrates [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 517-533. |
[3] | LYU Shaopin, ZHENG Guang, ZHENG Yuxuan, NIE Hong, ZHOU Fenghua. Dynamic Mechanical Properties of White Sandstone under Hydrostatic Pressure [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 543-554. |
[4] | SUN Binqiang, TIAN Maosheng, XIE Chao, LI Yanxiao, AN Jianmin. Properties of High Toughness Engineered Cementitious Composites with Granite Porphyry Rock Powder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 555-563. |
[5] | YAN Kezhou, SUN Xiangyang, ZHANG Xinze, WEN Kai, GUO Yanxia, CHENG Fangqin. Effects of Composition and Content of CFBFA on Hydrated Cementitious Properties [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 564-571. |
[6] | HONG Qiaoheng, HE Xiongfei, ZHANG Minglang, TANG Gang, HUANG Wei. Mechanical Property and Resistance to Water Dispersion of Solid Waste Shield Inert Synchronous Grouting Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 617-626. |
[7] | SUN Min, HOU Derui, GENG Litao, YAN Zhuoran, BI Yufeng, HUANG Zhaoliang, REN Shuaiyu, WANG Benyi. Road Performances and Mechanical Properties of Multi-Gravel Polyurethane Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 746-756. |
[8] | ZONG Wei, WANG Yuanhui, XU Liang, LIU Cheng, ZHENG Wuxi. Pavement Performance of Industrial Solid Waste Phosphogypsum Pavement Base Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 766-773. |
[9] | CHEN Yueshun, TANG Chengyu. Mechanical Properties of Calcium Carbonate Whisker Hybrid Polyethylene Fiber Reinforced Cement-Based Composite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 16-26. |
[10] | PANG Jianyong, ZHENG Ruiqi, HU Xiuyue, SUN Jian, XU Guoping, SU Yongqiang. Effect of Cooling Method after High Temperature on Mechanical Properties of Basalt Fiber Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 92-101. |
[11] | YANG Xin, YU Kui, JI Fengchun, NIE Tangzhe, LI Ke, BAI Tian. Mechanical Properties of SiO2/KH560 Modified Basalt Fiber Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 102-112. |
[12] | LIN Yuanming, LIN Jiafu, XIONG Xiaoli, YANG Zhengxian. Mechanical and NOx Degradation Performance of TiO2 Modified Steel Slag-Based Permeable Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 191-199. |
[13] | SHAN Junhong, ZHANG Ze, GAO Peng, WANG Kui. Performance of Desulfurization Building Gypsum Modified by Inorganic Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 268-275. |
[14] | ZHANG Xifei, CHEN Ding, GU Huazhi, HUANG Ao, FU Lvping. Effects of Carbon Sources on Properties of Reaction-Bonded Silicon Carbide [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 312-316. |
[15] | GUO Zheng, MU Song, ZHUANG Zhijie, ZHANG Hao, ZHANG Lei. Research Progress on Properties of Cement-Based Materials under Medium or High Vacuum Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3075-3082. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||