[1] 王宝民, 李高年, 韩俊南, 等. 杂散电流与环境耦合对水泥基材料耐久性影响研究进展[J]. 混凝土, 2019(1): 8-12. WANG B M, LI G N, HAN J N, et al. Overview of the durability of cement-based materials under the coupling conditions of stray current and environmental factors[J]. Concrete, 2019(1): 8-12 (in Chinese). [2] 韩 凯, 徐 锋, 王曙光, 等. 杂散电流与硫酸盐耦合作用对地下结构混凝土中氯离子传输过程的影响[J]. 混凝土, 2016(5): 45-48. HAN K, XU F, WANG S G, et al. Influence of the coupled effect of stray current and sulfate upon chloride diffusing into concrete of underground structures[J]. Concrete, 2016(5): 45-48 (in Chinese). [3] 蔡祥鹏. 杂散电流对水泥基材料溶蚀影响的试验研究[D]. 大连: 大连理工大学, 2020. CAI X P. Experimental study on the influence of stray current on corrosion of cement-based materials[D]. Dalian: Dalian University of Technology, 2020 (in Chinese). [4] DING Q, GENG J, HU S G. The effect of stray current on the process and threshold concentration of chloride ion causing steel bar corrosion[J]. Materials & Structures. 2008:709-718. [5] TANG K K. Stray current induced corrosion of steel fibre reinforced concrete[J]. Cement and Concrete Research, 2017, 100: 445-456. [6] 汤玉娟, 左晓宝, 何绍丽, 等. 矿渣掺量和水胶比对水泥浆体溶蚀特性的影响[J]. 硅酸盐学报, 2016, 44(11): 1579-1587. TANG Y J, ZUO X B, HE S L, et al. Influences of slag content and water-binder ratio on leaching behavior of cement paste[J]. Journal of the Chinese Ceramic Society, 2016, 44(11): 1579-1587 (in Chinese). [7] 刘仍光, 张 波, 阎培渝. 软水溶蚀环境中水泥-矿渣复合胶凝材料的浆体结构变化[J]. 硅酸盐学报, 2013, 41(11): 1487-1492. LIU R G, ZHANG B, YAN P Y. Microstructural variation of hardened cement-slag pastes leached by soft water[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1487-1492 (in Chinese). [8] 蒋 慷, 左晓宝, 汤玉娟, 等. 矿渣对粉煤灰-水泥复合浆体溶蚀性能的影响[J]. 土木工程与管理学报, 2017, 34(3): 97-102. JIANG K, ZUO X B, TANG Y J, et al. Effect of slag on dissolution performance of fly ash-cement composite slurry[J]. Journal of Civil Engineering and Management, 2017, 34(3): 97-102 (in Chinese). [9] 王凤波, 曹朝雷, 李 宇, 等. 不同矿渣掺量水泥基材料表面接触性溶蚀试验[J]. 人民长江, 2017, 48(5): 79-82. WANG F B, CAO Z L, LI Y, et al. Surface contact corrosion comparison experiment of cement-based material with different content slag[J]. Yangtze River, 2017, 48(5): 79-82 (in Chinese). [10] LUMLEY J S, GOLLOP R S, MOIR G K, et al. Degrees of reaction of the slag in some blends with Portland cements[J]. Cement and Concrete Research, 1996, 26(1): 139-151. [11] YANG H, JIANG L H, ZHANG Y, et al. Predicting the calcium leaching behavior of cement pastes in aggressive environments[J]. Construction and Building Materials, 2012, 29: 88-96. [12] CHOI Y S, YANG E I. Effect of calcium leaching on the pore structure, strength, and chloride penetration resistance in concrete specimens[J]. Nuclear Engineering and Design, 2013, 259: 126-136. [13] ALDEA C M, YOUNG F, WANG K J, et al. Effects of curing conditions on properties of concrete using slag replacement[J]. Cement and Concrete Research, 2000, 30(3): 465-472. [14] LI C, LI J Q, REN Q, et al. Degradation mechanism of blended cement pastes in sulfate-bearing environments under applied electric fields: sulfate attack vs. decalcification[J]. Composites Part B: Engineering, 2022, 246: 110255. [15] SUSANTO A, KOLEVA D A, VAN-BREUGEL K, et al. Stray current-induced development of cement-based microstructure in water-submerged, Ca(OH)2-submerged and sealed conditions[J]. Journal of Advanced Concrete Technology, 2017, 15(6): 244-268. [16] TINNEA R, TINNEA J, KUDER K. High-early-strength, high-resistivity concrete for direct-current light rail[J]. Journal of Materials in Civil Engineering, 2017, 29(4): 04016260. [17] LI C, JIANG Z W, MYERS R J, et al. Understanding the sulfate attack of Portland cement-based materials exposed to applied electric fields: mineralogical alteration and migration behavior of ionic species[J]. Cement and Concrete Composites, 2020, 111: 103630. [18] 曾欠谱. 电场对水泥基材料钙矾石形成与稳定的影响[D]. 重庆: 重庆大学, 2018. ZENG Q P. Effect of electric field on the formation and stability of ettringite, a cement-based material[D]. Chongqing: Chongqing University, 2018 (in Chinese). |