[1] 刘汉龙, 赵明华. 地基处理研究进展[J]. 土木工程学报, 2016, 49(1): 96-115. LIU H L, ZHAO M H. Review of ground improvement technical and its application in China[J]. China Civil Engineering Journal, 2016, 49(1): 96-115 (in Chinese). [2] 谷 川, 王林伟, 王 军, 等. 不同初始含水率条件下欠固结软黏土地基单桩负摩阻力模型试验研究[J]. 岩石力学与工程学报, 2022, 41(12): 2554-2566. GU C, WANG L W, WANG J, et al. Model test study on negative friction of single pile in underconsolidated soft clay foundation under different initial moisture content[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(12): 2554-2566 (in Chinese). [3] 徐日庆, 朱坤垅, 黄 伟, 等. 淤泥质土固化及路用性能试验研究[J]. 湖南大学学报(自然科学版), 2022, 49(3): 167-174. XU R Q, ZHU K L, HUANG W, et al. Experimental study on solidification and road performance of mucky soil[J]. Journal of Hunan University (Natural Sciences), 2022, 49(3): 167-174 (in Chinese). [4] ZENTAR R, WANG D X, ABRIAK N E, et al. Utilization of siliceous-aluminous fly ash and cement for solidification of marine sediments[J]. Construction and Building Materials, 2012, 35: 856-863. [5] SAINI G, VATTIPALLI U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica[J]. Case Studies in Construction Materials, 2020, 12: e00352. [6] 俞家人, 陈永辉, 陈 庚, 等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报, 2020, 23(2): 364-371. YU J R, CHEN Y H, CHEN G, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials, 2020, 23(2): 364-371 (in Chinese). [7] 刘松玉, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2016, 49(3): 6-30. LIU S Y, ZHAN L T, HU L M, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2016, 49(3): 6-30 (in Chinese). [8] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [9] WANG A G, ZHENG Y, ZHANG Z H, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review[J]. Engineering, 2020, 6(6): 695-706. [10] LV Q F, WANG Z S, GU L Y, et al. Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer[J]. Journal of Central South University, 2020, 27(6): 1691-1702. [11] 孙秀丽, 童 琦, 刘文化, 等. 碱激发粉煤灰和矿粉改性疏浚淤泥力学特性及显微结构研究[J]. 大连理工大学学报, 2017, 57(6): 622-628. SUN X L, TONG Q, LIU W H, et al. Study of microstructure and mechanical properties of dredged silt solidified using fly ash and slag stimulated by alkali[J]. Journal of Dalian University of Technology, 2017, 57(6): 622-628 (in Chinese). [12] 吴燕开, 胡晓士, 胡 锐, 等. 烧碱激发钢渣粉在淤泥质土中的试验研究[J]. 岩土工程学报, 2017, 39(12): 2187-2194. WU Y K, HU X S, HU R, et al. Experimental study on caustic soda-activated steel slag powder in muddy soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2187-2194 (in Chinese). [13] YAGHOUBI M, ARULRAJAH A, DISFANI M M, et al. Effects of industrial by-product based geopolymers on the strength development of a soft soil[J]. Soils and Foundations, 2018, 58(3): 716-728. [14] WANG Y G, LIU X M, ZHANG W, et al. Effects of Si/Al ratio on the efflorescence and properties of fly ash based geopolymer[J]. Journal of Cleaner Production, 2020, 244: 118852. [15] DONG C H, XIE X Q, WANG X L, et al. Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis[J]. Food and Bioproducts Processing, 2009, 87(2): 139-144. [16] ASADZADEH S, KHOSHBAYAN S. Multi-objective optimization of influential factors on production process of foamed concrete using Box-Behnken approach[J]. Construction and Building Materials, 2018, 170: 101-110. [17] HATTAB M W. On the use of data transformation in response surface methodology[J]. Quality and Reliability Engineering International, 2018, 34(6): 1185-1194. [18] 刘树龙, 李公成, 刘国磊, 等. 基于响应面法的矿渣基全固废胶凝材料配比优化[J]. 硅酸盐通报, 2021, 40(1): 187-193. LIU S L, LI G C, LIU G L, et al. Ratio optimization of slag-based solid waste cementitious material based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 187-193 (in Chinese). [19] 吕官记, 季 韬. 基于响应面法的三元聚合物砂浆力学性能[J]. 建筑材料学报, 2021, 24(5): 970-976. LÜ G J, JI T. Mechanical properties of ternary polymer mortar based on response surface method[J]. Journal of Building Materials, 2021, 24(5): 970-976 (in Chinese). [20] 杨振甲, 何 猛, 吴 杨, 等. 矿渣-粉煤灰地聚物固化淤泥力学性能和路用性能研究[J]. 硅酸盐通报, 2022, 41(2): 693-703+724. YANG Z J, HE M, WU Y, et al. Mechanical properties and road performance of slag-fly ash geopolymer stabilized sludge[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 693-703+724 (in Chinese). [21] YAO J L, QIU H J, HE H A, et al. Application of a soft soil stabilized by composite geopolymer[J]. Journal of Performance of Constructed Facilities, 2021, 35(4): 35. [22] 王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3197-3205. WANG D X, WANG H W, ZOU W L, et al. Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 3197-3205 (in Chinese). [23] 吴 俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655 (in Chinese). [24] 童国庆, 张吾渝, 高义婷, 等. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 129-134. TONG G Q, ZHANG W Y, GAO Y T, et al. Mechanical properties and micromechanism of alkali-activated fly ash geopolymer[J]. Materials Reports, 2022, 36(4): 129-134 (in Chinese). [25] 周恒宇, 王修山, 胡星星, 等. 地聚合物固化淤泥强度增长影响因素及机制分析[J]. 岩土力学, 2021, 42(8): 2089-2098. ZHOU H Y, WANG X S, HU X X, et al. Influencing factors and mechanism analysis of strength development of geopolymer stabilized sludge[J]. Rock and Soil Mechanics, 2021, 42(8): 2089-2098 (in Chinese). |