[1] ZHAO Y J, SHI T, CAO L Y, et al. Influence of steel slag on the properties of alkali-activated fly ash and blast-furnace slag based fiber reinforced composites[J]. Cement and Concrete Composites, 2021, 116: 103875. [2] 谢 巍, 郑 凡, 周 旻, 等. NaAlO2激发对旋喷用固废基浆料固化性能的影响研究[J]. 金属矿山, 2022(3): 213-219. XIE W, ZHENG F, ZHOU M, et al. Study of NaAlO2 activating on the curing performance of solid waste-based rotary spray slurry[J]. Metal Mine, 2022(3): 213-219 (in Chinese). [3] 琚永健, 倪 文, 李 颖, 等. 精炼渣-转炉渣-矿渣-脱硫石膏胶凝材料组成优化及协同作用机理研究[J]. 河北科技大学学报, 2022, 43(2): 211-220. JU Y J, NI W, LI Y, et al. Study on composition optimization and synergistic mechanism of cementitious materials of refining slag, converter slag, blast furnace slag and desulfurized gypsum[J]. Journal of Hebei University of Science and Technology, 2022, 43(2): 211-220 (in Chinese). [4] 栗东平, 平浩岩, 张凯帆, 等. 钢渣-矿渣-脱硫石膏复合胶凝材料的制备及水化机理[J]. 科学技术与工程, 2023, 23(6): 2558-2566. LI D P, PING H Y, ZHANG K F, et al. Preparation and hydration mechanism of composite cementitious materials containing steel slag, slag and desulfurization gypsum[J]. Science Technology and Engineering, 2023, 23(6): 2558-2566 (in Chinese). [5] DUAN S Y, LIAO H Q, CHENG F Q, et al. Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag[J]. Construction and Building Materials, 2018, 187: 1113-1120. [6] LI Q A, LI J J, ZHANG S Q, et al. Research progress of low-carbon cementitious materials based on synergistic industrial wastes[J]. Energies, 2023, 16(5): 2376. [7] 李云云, 梁文特, 倪 文, 等. 钢渣尾泥-矿渣-脱硫石膏三元体系水化硬化特性[J]. 硅酸盐通报, 2022, 41(2): 536-544. LI Y Y, LIANG W T, NI W, et al. Characteristics of hydration and hardening of steel slag mud-blast furnace slag-desulphurization gypsum system[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 536-544 (in Chinese). [8] 余乐安. 基于人工智能的预测与决策优化理论和方法研究[J]. 管理科学, 2022, 35(1): 60-66. YU L A. Forecasting and decision optimization theory and methods based on artificial intelligence[J]. Journal of Management Science, 2022, 35(1): 60-66 (in Chinese). [9] ZHANG J, LI S C, LI Z F. Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks[J]. Journal of Cleaner Production, 2020, 273: 122972. [10] DEROUSSEAU M A, KASPRZYK J R, SRUBAR W V. Computational design optimization of concrete mixtures: a review[J]. Cement and Concrete Research, 2018, 109: 42-53. [11] 崔乃丹. 基于粒子群优化算法与BP神经网络的高铁客运量预测算法[J]. 自动化技术与应用, 2022, 41(4): 148-150. CUI N D. High speed railway passenger volume prediction algorithm based on particle swarm optimization algorithm and BP neural network[J]. Techniques of Automation and Applications, 2022, 41(4): 148-150 (in Chinese). [12] 余 睿, 范定强, 水中和, 等. 基于颗粒最紧密堆积理论的超高性能混凝土配合比设计[J]. 硅酸盐学报, 2020, 48(8): 1145-1154. YU R, FAN D Q, SHUI Z H, et al. Mix design of ultra-high performance concrete based on particle densely packing theory[J]. Journal of the Chinese Ceramic Society, 2020, 48(8): 1145-1154 (in Chinese). [13] VENKATESAN M, ZAIB Q, SHAH I H, et al. Optimum utilization of waste foundry sand and fly ash for geopolymer concrete synthesis using D-optimal mixture design of experiments[J]. Resources, Conservation and Recycling, 2019, 148: 114-123. [14] 朱庚杰, 朱万成, 齐兆军, 等. 固废基充填胶凝材料配比分步优化及其水化胶结机理[J]. 工程科学学报, 2023, 45(8): 1304-1315. ZHU G J, ZHU W C, QI Z J, et al. Step optimization of a solid waste-based binder for backfill and a study on hydration and cementation mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1304-1315 (in Chinese). [15] FAN D Q, YU R, FU S Y, et al. Precise design and characteristics prediction of ultra-high performance concrete (UHPC) based on artificial intelligence techniques[J]. Cement and Concrete Composites, 2021, 122: 104171. [16] 巩运孟. 基于粒子群优化BP神经网络算法[J]. 武汉理工大学学报, 2018, 40(9): 96-101. GONG Y M. Particle swarm optimization BP neural network algorithm[J]. Journal of Wuhan University of Technology, 2018, 40(9): 96-101 (in Chinese). [17] 金珊珊, 杨金龙, 索 智, 等. 基于分形理论的水泥砂浆强度预测模型[J]. 混凝土与水泥制品, 2020(6): 1-5+12. JIN S S, YANG J L, SUO Z, et al. The strength prediction model of cement mortar based on fractal theory[J]. China Concrete and Cement Products, 2020(6): 1-5+12 (in Chinese). [18] 郭维超, 赵庆新, 邱永祥, 等. 碱渣-电石渣激发混凝土基本力学性能与应力-应变关系[J]. 材料导报, 2024, 38(17): 1-14. GUO W C, ZHAO Q X, QIU Y X, et al. Basic mechanical properties and stress-strain relationship of soda residue calcium carbide slag activated concrete[J]. Materials Reports, 2024, 38(17): 1-14. (in Chinese) [19] 崔孝炜, 倪 文, 狄燕清. 钢渣矿渣基全固废胶凝材料的化学活化[J]. 硅酸盐通报, 2018, 37(4): 1411-1417. CUI X W, NI W, DI Y Q. Chemical activation of cementitious materials with all solid waste based of steel slag and blast furnace slag[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1411-1417 (in Chinese). [20] ZHU C F, TAN H B, DU C, et al. Enhancement of ultra-fine slag on compressive strength of solid waste-based cementitious materials: towards low carbon emissions[J]. Journal of Building Engineering, 2023, 63: 105475. [21] EL-DIDAMONY H, AMER A A, EL-SOKKARY T M, et al. Effect of substitution of granulated slag by air-cooled slag on the properties of alkali activated slag[J]. Ceramics International, 2013, 39(1): 171-181. [22] 李 颖, 吴保华, 倪 文, 等. 矿渣-钢渣-石膏体系早期水化反应中的协同作用[J]. 东北大学学报(自然科学版), 2020, 41(4): 581-586. LI Y, WU B H, NI W, et al. Synergies in early hydration reaction of slag-steel slag-gypsum system[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 581-586 (in Chinese). [23] 冯春花, 王希建, 李东旭. 29Si、27Al固体核磁共振在水泥基材料中的应用进展[J]. 核技术, 2014, 37(1): 48-53. FENG C H, WANG X J, LI D X. Application progress of solid 29Si, 27Al NMR in the research of cement-based materials[J]. Nuclear Techniques, 2014, 37(1): 48-53 (in Chinese). [24] NGUYEN T N, PHUNG Q T, YU Z Y, et al. Alteration in molecular structure of alkali activated slag with various water to binder ratios under accelerated carbonation[J]. Scientific Reports, 2022, 12: 5524. [25] GAO X, YU Q L, BROUWERS H J H. Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites[J]. Ceramics International, 2017, 43(15): 12408-12419. [26] 王 可, 张英华, 李雨晴, 等. 固体核磁共振技术在水泥基材料研究中的应用[J]. 波谱学杂志, 2020, 37(1): 40-51. WANG K, ZHANG Y H, LI Y Q, et al. Applications of solid-state nuclear magnetic resonance spectroscopy in cementitious materials research[J]. Chinese Journal of Magnetic Resonance, 2020, 37(1): 40-51 (in Chinese). |