[1] REN J Q, BI K, FU X L, et al. Novel Al2Mo3O12-based temperature-stable microwave dielectric ceramics for LTCC applications[J]. Journal of Materials Chemistry C, 2018, 6(42): 11465-11470. [2] 吕子彬, 郭恩霞, 海 韵, 等. 分散剂对低温共烧陶瓷流延浆料流变性能的影响[J]. 硅酸盐通报, 2022, 41(11): 3979-3989. LYU Z B, GUO E X, HAI Y, et al. Effects of dispersants on rheological properties of LTCC casting slurry[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3979-3989 (in Chinese). [3] LI J, WANG D J, SHAN Y T, et al. Influence of binder content and the ratio of plasticizer to binder on tape casting and sintering performance of CaO-B2O3-SiO2-Al2O3 glass/Al2O3 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(22): 20022-20032. [4] HU T, UUSIMÄKI A, JANTUNEN H, et al. Optimization of MgTiO3-CaTiO3 based LTCC tapes containing B2O3 for use in microwave applications[J]. Ceramics International, 2005, 31(1): 85-93. [5] 洪 燕, 谭 芳, 谢志翔, 等. CSLST微波介质陶瓷的流延浆料的制备工艺研究[J]. 人工晶体学报, 2015, 44(8): 2250-2254. HONG Y, TAN F, XIE Z X, et al. Study on preparation technology of tape-casting slurry on CSLST microwave dielectric ceramic[J]. Journal of Synthetic Crystals, 2015, 44(8): 2250-2254 (in Chinese). [6] SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature co-fired ceramics with ultra-low sintering temperature: a review[J]. Current Opinion in Solid State and Materials Science, 2016, 20(3): 151-170. [7] 崔学民, 周 济, 沈建红, 等. 低温共烧陶瓷(LTCC)材料的应用及研究现状[J]. 材料导报, 2005, 19(4): 1-4. CUI X M, ZHOU J, SHEN J H, et al. Application and research progress of LTCC materials[J]. Materials Review, 2005, 19(4): 1-4 (in Chinese). [8] 胡永才. 低温共烧陶瓷电子浆料的制备及性能研究[D]. 广州: 广东工业大学, 2021. HU Y C. Preparation and properties of low temperature co-fired ceramic electronic paste[D].Guangzhou: Guangdong University of Technology, 2021 (in Chinese). [9] ZHOU J. Towards rational design of low-temperature co-fired ceramic (LTCC) materials[J]. Journal of Advanced Ceramics, 2012, 1(2): 89-99. [10] GOLONKA L. Technology and applications of low temperature cofired ceramic (LTCC) based sensors and microsystems[J]. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2006, 54: 221-231. [11] 李世鸿. 厚膜金导体浆料[J]. 贵金属, 2001, 22(1): 57-62. LI S H. Thick-film gold conductor pastes[J]. Precious Metals, 2001, 22(1): 57-62 (in Chinese). [12] 刘 发. 与Ca-B-Si生带共烧的金导体浆料研究[D]. 长沙: 国防科学技术大学, 2015. LIU F. Study on gold conductor slurry co-fired with Ca-B-Si green belt[D].Changsha: National University of Defense Technology, 2015 (in Chinese). [13] LUO H, LI S H, ZHENG Y M, et al. Preparation and characterization of monodispersed near-sphere and flake gold powders[J]. Precious Metals, 2017, 38(01): 15-21. [14] 关俊卿, 滕海涛, 陈 峤, 等. 球形金粉的化学还原制备及表征[J]. 贵金属, 2018, 39(S1): 97-100. GUAN J Q, TENG H T, CHEN Q, et al. A spherical gold powder prepared by chemical reduction and its characterization[J]. Precious Metals, 2018, 39(S1): 97-100 (in Chinese). [15] 赵科良, 田发香, 王大林, 等. 亚微米球形金粉的制备与应用[J]. 电子元件与材料, 2013, 32(10): 33-36. ZHAO K L, TIAN F X, WANG D L, et al. Preparation and application of submicron spherical gold powders[J]. Electronic Components and Materials, 2013, 32(10): 33-36 (in Chinese). [16] XU F G, GUO C L, SUN Y J, et al. Facile fabrication of single crystal gold nanoplates with micrometer lateral size[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353(2/3): 125-131. [17] 吴 超, 叶红齐, 董 虹, 等. 电子浆料用微米级银粉的分步还原制备及其晶体生长特征[J]. 稀有金属与硬质合金, 2011, 39(3): 31-34+66. WU C, YE H Q, DONG H, et al. Preparation of micron silver powder by multistep reduction and its crystal growth characteristics[J]. Rare Metals and Cemented Carbides, 2011, 39(3): 31-34+66 (in Chinese). [18] 郑 权, 刘卓峰, 张为军. 厚膜金导体浆料用类球形金粉制备研究[J]. 电子元件与材料, 2017, 36(8): 55-59. ZHENG Q, LIU Z F, ZHANG W J. Preparation of spherical gold powder for thick film gold conductor paste[J]. Electronic Components and Materials, 2017, 36(8): 55-59 (in Chinese). [19] XIA Y N, GILROY K D, PENG H C, et al. Seed-mediated growth of colloidal metal nanocrystals[J]. Angewandte Chemie International Edition, 2017, 56(1): 60-95. [20] 孙丛婷, 薛冬峰. 结晶生长的化学键合理论及其在稀土晶体快速生长中的应用[J]. 中国科学: 化学, 2018, 48(8): 804-814. SUN C T, XUE D F. Chemical bonding theory of single crystal growth and its application to fast single crystal growth of rare earth inorganic materials[J]. Scientia Sinica Chimica), 2018, 48(8): 804-814 (in Chinese). [21] HAN S B, XIA G J, CAI C, et al. Gas-assisted transformation of gold from fcc to the metastable 4H phase[J]. Nature Communications, 2020, 11: 552. [22] 焦守政, 齐 文, 陈 松, 等. 分散剂及粉体粒径对光固化氧化铝陶瓷浆料粘度及制件性能的影响[J]. 硅酸盐通报, 2020, 39(1): 260-265. JIAO S Z, QI W, CHEN S, et al. Effect of dispersant and powder particle size on viscosity and samples properties of photocured alumina ceramic slurries[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 260-265 (in Chinese). [23] ALIAS R, MOHD S. Rheological behaviors and their correlation with printing performance of silver paste for LTCC tape[M]//Rheology. InTech, 2012 [24] 赵 莹, 张建益, 陆冬梅, 等. 金粉和玻璃粉对厚膜金导体浆料的性能影响[J]. 电子工艺技术, 2015, 36(4): 211-213+218. ZHAO Y, ZHANG J Y, LU D M, et al. Effect of gold powder and glass powder on properties of thick film gold conductor paste[J]. Electronics Process Technology, 2015, 36(4): 211-213+218 (in Chinese). [25] YAN T N, ZHANG W J, CHEN X Y, et al. Improvement of gold electrode conductivity after cofiring with CaO-B2O3-SiO2 green tapes for LTCC application[J]. Ceramics International, 2020, 46(1): 493-499. |