[1] LI V C, MISHRA D K, NAAMAN A E, et al. On the shear behavior of engineered cementitious composites[J]. Advanced Cement Based Materials, 1994, 1(3): 142-149. [2] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. [3] LI V C. Engineered cementitious composites tailo-red composites through micromechanical modeling[J]. Canadian Society for Civil Engineering, 1998: 64-97. [4] PAN Z F, WU C, LIU J Z, et al. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC)[J]. Construction and Building Materials, 2015, 78: 397-404. [5] PEREIRA E B, FISCHER G, BARROS J A O. Direct assessment of tensile stress-crack opening behavior of strain hardening cementitious composites (SHCC)[J]. Cement and Concrete Research, 2012, 42(6): 834-846. [6] 张 聪, 曹明莉. 多尺度纤维增强水泥基复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3): 661-668. ZHANG C, CAO M L. Mechanical property test of a multi-scale fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 661-668 (in Chinese). [7] LI V C. From micromechanics to structural engineering-the design of cementitious composites for civil engineering applications[J]. Structural Engineering/Earthquake Engineering, 1994, 10(2): 1-34. [8] MARSHALL D B, COX B N. A J-integral method for calculating steady-state matrix cracking stresses in composites[J]. Mechanics of Materials, 1988, 7(2): 127-133. [9] KANDA T, LI V C. Practical design criteria for saturated pseudo strain hardening behavior in ECC[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 59-72. [10] MA H, CAI J M, LIN Z, et al. CaCO3 whisker modified engineered cementitious composite with local ingredients[J]. Construction and Building Materials, 2017, 151: 1-8. [11] PICHLER C, LACKNER R, MANG H A. A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials[J]. Engineering Fracture Mechanics, 2007, 74(1/2): 34-58. [12] 王成启, 吴科如. 不同几何尺寸纤维混杂混凝土的混杂效应[J]. 建筑材料学报, 2005, 8(3): 250-255. WANG C Q, WU K R. Research on the hybrid effect of different geometrical size hybrid fiber reinforced concrete[J]. Journal of Building Materials, 2005, 8(3): 250-255 (in Chinese). [13] 工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461——2018[J]. 北京:建材工业出版社, 2018. Ministry of Industry and Information Technology. Test method for mechanical properties of high ductility fiber reinforced cement-based Composites: JC/T 2461—2018[J]. Beijing: Building Materials Industry Press, 2018 (in Chinese). [14] ZHOU J, QIAN S Z, YE G, et al. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence[J]. Cement and Concrete Composites, 2012, 34(3): 342-348. [15] 张 君, 居贤春, 郭自力. PVA纤维直径对水泥基复合材料抗拉性能的影响[J]. 建筑材料学报, 2009, 12(6): 706-710. ZHANG J, JU X C, GUO Z L. Tensile properties of fiber reinforced cement composite with different PVA fibers[J]. Journal of Building Materials, 2009, 12(6): 706-710 (in Chinese). [16] 庞超明, LEUNG C K Y, 孙 伟. 高掺量粉煤灰高延性水泥基复合材料的制备和性能[J]. 硅酸盐学报, 2009, 37(12): 2071-2077. PANG C M, LEUNG C K Y, SUN W. Preparation and properties of high ductility cementitious composites with high content of fly-ash[J]. Journal of the Chinese Ceramic Society, 2009, 37(12): 2071-2077 (in Chinese). [17] 汪 潇, 王宇斌, 杨留栓, 等. 高性能大掺量粉煤灰混凝土研究[J]. 硅酸盐通报, 2013, 32(3): 523-527+532. WANG X, WANG Y B, YANG L S, et al. High-performance high-volume fly ash concrete[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(3): 523-527+532 (in Chinese). [18] 王 洪, 陈伟天, 陈昌礼. 硅灰对高强混凝土强度影响的试验研究[J]. 混凝土, 2011(7): 74-76. WANG H, CHEN W T, CHEN C L. Experimental research on the effect of silica fume to the strength of high-strength concrete[J]. Concrete, 2011(7): 74-76 (in Chinese). [19] 何小芳, 卢军太, 李小楠, 等. 硅灰对混凝土性能影响的研究进展[J]. 硅酸盐通报, 2013, 32(3): 423-428. HE X F, LU J T, LI X N, et al. Progress in research of effect of silica fume on the performance of cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(3): 423-428 (in Chinese). [20] 刘光焰, 高鹏飞, 李德成, 等. 基于价值工程分析法的玻璃粉混凝土经济性分析[J]. 混凝土, 2020(6): 163-165+174. LIU G Y, GAO P F, LI D C, et al. Economic analysis of glass powder concrete based on value engineering analysis[J]. Concrete, 2020(6): 163-165+174 (in Chinese). |