BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2023, Vol. 42 ›› Issue (11): 3787-3798.
Special Issue: 水泥混凝土
• Cement and Concrete • Next Articles
LI Maosen1, WANG Lu1, WANG Jun2, LI Xi2, XU Fenlian2, LIU Shuhua1
Received:
2023-06-05
Revised:
2023-08-15
Online:
2023-11-15
Published:
2023-11-22
CLC Number:
LI Maosen, WANG Lu, WANG Jun, LI Xi, XU Fenlian, LIU Shuhua. Research Progress on Carbonation Behavior of Concrete with Large Volume of Mineral Admixture[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(11): 3787-3798.
[1] AHMAD J, KONTOLEON K J, MAJDI A, et al. A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production[J]. Sustainability, 2022, 14(14): 8783. [2] MALAMI C, KALOIDAS V, BATIS G, et al. Carbonation and porosity of mortar specimens with pozzolanic and hydraulic cement admixtures[J]. Cement and Concrete Research, 1994, 24(8): 1444-1454. [3] 柳俊哲. 混凝土碳化研究与进展(1): 碳化机理及碳化程度评价[J]. 混凝土, 2005(11): 10-13+23. LIU J Z. A review of carbonation in reinforced concrete(Ⅰ): mechanism of carbonation and evaluative methods[J]. Concrete, 2005(11): 10-13+23 (in Chinese). [4] PACHECO T F, MIRALDO S, LABRINCHA J A, et al. An overview on concrete carbonation in the context of eco-efficient construction: evaluation, use of SCMs and/or RAC[J]. Construction and Building Materials, 2012, 36: 141-150. [5] 陈嘉俊. 碳化环境混凝土耐久性劣化机理与影响因素分析[J]. 江西建材, 2021(1): 14-15+17. CHEN J J. Mechanism and influencing factors of durability deterioration of concrete in carbonation environment[J]. Jiangxi Building Materials, 2021(1): 14-15+17 (in Chinese). [6] PAPADAKIS V G, FARDIS M N, VAYENAS C G. Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation[J]. Materials and Structures, 1992, 25(5): 293-304. [7] HUET B, L'HOSTIS V, MISERQUE F, et al. Electrochemical behavior of mild steel in concrete: influence of pH and carbonate content of concrete pore solution[J]. Electrochimica Acta, 2005, 51(1): 172-180. [8] LUO S, GUO M Z, LING T C. Mechanical and microstructural performances of fly ash blended cement pastes with mixing CO2 during fresh stage[J]. Construction and Building Materials, 2022, 358: 129444. [9] 贾耀东. 大掺量矿物掺合料混凝土的碳化特性研究[D]. 北京: 清华大学, 2010. JIA Y D. Study on carbonation characteristics of concrete with large amount of mineral admixture[D]. Beijing: Tsinghua University, 2010 (in Chinese). [10] 尹 航. 大掺量矿物掺合料混凝土碳化性能研究[D]. 秦皇岛: 燕山大学, 2016. YIN H. Study on carbonation performance of concrete with large amount of mineral admixture[D]. Qinhuangdao: Yanshan University, 2016 (in Chinese). [11] 刘 斌. 大掺量粉煤灰混凝土的抗碳化性能[J]. 混凝土, 2003(3): 44-48. LIU B. Carbonation resistance property of the high fly-ash content contrete[J]. Concrete, 2003(3): 44-48 (in Chinese). [12] 甘昌成, 麦 锐, 李建庭, 等. 大掺量掺合料混凝土抗碳化性能的评估分析[J]. 粉煤灰综合利用, 2011, 24(3): 10-16. GAN C C, MAI R, LI J T, et al. Appraisal analysis on carbonation resistance of concrete with high-volume admixture[J]. Fly Ash Comprehensive Utilization, 2011, 24(3): 10-16 (in Chinese). [13] 杜晋军, 金祖权, 蒋金洋. 粉煤灰混凝土的碳化研究[J]. 粉煤灰, 2005, 17(6): 9-11. DU J J, JIN Z Q, JIANG J Y. Experimental study of fly ash concrete carbonization[J]. Coal Ash China, 2005, 17(6): 9-11 (in Chinese). [14] 陈金平. 大掺量粉煤灰高性能混凝土碳化性能研究[J]. 施工技术, 2010, 39(4): 87-89. CHEN J P. Research on carbonation resistance of high-performance concrete containing large amount of fly ash[J]. Construction Technology, 2010, 39(4): 87-89 (in Chinese). [15] 陈 茜. 不同条件下粉煤灰对混凝土抗Cl-渗透和抗碳化性能的影响[J]. 混凝土世界, 2019(10): 67-71. CHEN Q. The influence of fly ash on the anti-Cl- penetration and carbonation resistance of concrete under different conditions[J]. China Concrete, 2019(10): 67-71 (in Chinese). [16] 张文之, 刘 敏. 不同养护条件对大掺量粉煤灰混凝土抗碳化性能试验研究[J]. 硅酸盐通报, 2017, 36(8): 2619-2624. ZHANG W Z, LIU M. Experimental study on carbonation resistance of high volume fly ash concrete under different curing conditions[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2619-2624 (in Chinese). [17] 吕志军. 基于混凝土碳化性能的不同养护条件下粉煤灰临界掺量[J]. 石家庄铁道大学学报(自然科学版), 2022, 35(2): 53-59. LYU Z J. Critical content of fly ash under different curing conditions based on carbonation performance[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2022, 35(2): 53-59 (in Chinese). [18] ZHANG W Y, NA S, KIM J, et al. Evaluation of the combined deterioration by freeze-thaw and carbonation of mortar incorporating BFS, limestone powder and calcium sulfate[J]. Materials and Structures, 2017, 50(3): 171. [19] 刘数华, 冷发光, 王 军. 混凝土辅助胶凝材料[M]. 2版. 北京: 人民交通出版社, 2020. LIU S H, LENG H H, WANG J. Concrete auxiliary cementitious materials[M]. 2nd ed. Beijing: People's Transportation Publishing House, 2020 (in Chinese). [20] 王培铭, 朱艳芳, 计亦奇, 等. 掺粉煤灰和矿渣粉大流动度混凝土的碳化性能[J]. 建筑材料学报, 2001, 4(4): 305-310. WANG P M, ZHU Y F, JI Y Q, et al. Carbonation resistance of concrete containing ground fly ash and ground granulated blast furnace slag[J]. Journal of Building Materials, 2001, 4(4): 305-310 (in Chinese). [21] 宋 华, 牛荻涛, 李春晖. 矿物掺合料混凝土碳化性能试验研究[J]. 硅酸盐学报, 2009, 37(12): 2066-2070. SONG H, NIU D T, LI C H. Carbonation test of concrete containing mineral admixtures[J]. Journal of the Chinese Ceramic Society, 2009, 37(12): 2066-2070 (in Chinese). [22] 刘海峰, 马荷姣, 刘 宁, 等. 粉煤灰及沙漠砂对混凝土抗碳化性能的影响[J]. 硅酸盐通报, 2017, 36(11): 3823-3828+3847. LIU H F, MA H J, LIU N, et al. Influence of fly ash and desert sand on the carbonation resistance property of concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(11): 3823-3828+3847 (in Chinese). [23] KHUNTHONGKEAW J, TANGTERMSIRIKUL S, LEELAWAT T. A study on carbonation depth prediction for fly ash concrete[J]. Construction and Building Materials, 2006, 20(9): 744-753. [24] SISOMPHON K, FRANKE L. Carbonation rates of concretes containing high volume of pozzolanic materials[J]. Cement and Concrete Research, 2007, 37(12): 1647-1653. [25] ATIŞ C D. Accelerated carbonation and testing of concrete made with fly ash[J]. Construction and Building Materials, 2003, 17(3): 147-152. [26] CABRERA J G, WOOLLEY G R. A study of twenty five year old pulverized fuel ash concrete used in f oundation structures[J]. Proceedings of the Institution of Civil Engineers, 1985, 79(1): 149-166. [27] HOBBS D W. Carbonation of concrete containing pfa[J]. Magazine of Concrete Research, 1994, 46(166): 35-38. [28] PARROTT L J. A study of carbonation-induced corrosion[J]. Magazine of Concrete Research, 1994, 46(166): 23-28. [29] KHAN M I, LYNSDALE C J. Strength, permeability, and carbonation of high-performance concrete[J]. Cement and Concrete Research, 2002, 32(1): 123-131. [30] GRUYAERT E, VAN-DEN-HEEDE P, DE-BELIE N. Carbonation of slag concrete: effect of the cement replacement level and curing on the carbonation coefficient-effect of carbonation on the pore structure[J]. Cement and Concrete Composites, 2013, 35(1): 39-48. [31] KULAKOWSKI M P, PEREIRA F M, MOLIN D C C D. Carbonation-induced reinforcement corrosion in silica fume concrete[J]. Construction and Building Materials, 2009, 23(3): 1189-1195. [32] SULAPHA P, WONG S F, WEE T H, et al. Carbonation of concrete containing mineral admixtures[J]. Journal of Materials in Civil Engineering, 2003, 15(2): 134-143. [33] LIM S, MONDAL P. Effects of incorporating nanosilica on carbonation of cement paste[J]. Journal of Materials Science, 2015, 50(10): 3531-3540. [34] CASTELLOTE M, ANDRADE C. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE[J]. Cement and Concrete Research, 2008, 38(12): 1374-1384. [35] DE WEERDT K, PLUSQUELLEC G, BELDA R A, et al. Effect of carbonation on the pore solution of mortar[J]. Cement and Concrete Research, 2019, 118: 38-56. [36] THIERY M, VILLAIN G, DANGLA P, et al. Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics[J]. Cement and Concrete Research, 2007, 37(7): 1047-1058. [37] CIZER Ö, VAN B K, ELSEN J, et al. Real-time investigation of reaction rate and mineral phase modifications of lime carbonation[J]. Construction and Building Materials, 2012, 35: 741-751. [38] YANG T, KELLER B, MAGYARI E, et al. Direct observation of the carbonation process on the surface of calcium hydroxide crystals in hardened cement paste using an Atomic Force Microscope[J]. Journal of Materials Science, 2003, 38(9): 1909-1916. [39] GALAN I, GLASSER F P, BAZA D, et al. Assessment of the protective effect of carbonation on portlandite crystals[J]. Cement and Concrete Research, 2015, 74: 68-77. [40] ARANDIGOYEN M, BICER-SIMSIR B, ALVAREZ J I, et al. Variation of microstructure with carbonation in lime and blended pastes[J]. Applied Surface Science, 2006, 252(20): 7562-7571. [41] LIU Z Y, VAN-DEN-HEEDE P, ZHANG C, et al. Carbonation of blast furnace slag concrete at different CO2 concentrations: carbonation rate, phase assemblage, microstructure and thermodynamic modelling[J]. Cement and Concrete Research, 2023, 169: 107161. [42] BLACK L, GARBEV K, GEE I. Surface carbonation of synthetic C-S-H samples: a comparison between fresh and aged C-S-H using X-ray photoelectron spectroscopy[J]. Cement and Concrete Research, 2008, 38(6): 745-750. [43] SEVELSTED T F, SKIBSTED J. Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy[J]. Cement and Concrete Research, 2015, 71: 56-65. [44] MORALES F V, FINDLING N, BRUNET F. Changes on the nanostructure of cementitius calcium silicate hydrates (C-S-H) induced by aqueous carbonation[J]. Journal of Materials Science, 2012, 47(2): 764-771. [45] HYVERT N, SELLIER A, DUPRAT F, et al. Dependency of C-S-H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation[J]. Cement and Concrete Research, 2010, 40(11): 1582-1589. [46] RIMMELÉ G, BARLET G V, PORCHERIE O, et al. Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids[J]. Cement and Concrete Research, 2008, 38(8/9): 1038-1048. [47] XU Z H, ZHANG Z X, HUANG J S, et al. Effects of temperature, humidity and CO2 concentration on carbonation of cement-based materials: a review[J]. Construction and Building Materials, 2022, 346: 128399. [48] 黄春霞. 大掺量粉煤灰混凝土碳化深度预测模型试验研究[D]. 杨凌: 西北农林科技大学, 2011. HUANG C X. Experimental study on prediction model of carbonation depth of high volume fly ash concrete[D].Yangling: Northwest A & F University, 2011 (in Chinese). [49] 许丽萍, 黄士元. 预测混凝土中碳化深度的数学模型[J]. 上海建材学院学报, 1991(4): 347-357. XU L P, HUANG S Y. The mathematical model of predicted carbonation depth in concrete[J]. Journal of Building Materials, 1991(4): 347-357 (in Chinese). [50] 李铭杰, 夏 彤, 齐 权, 等. 防水闸混凝土碳化试验及力学性能研究[J]. 水利科技与经济, 2023, 29(3): 150-153. LI M J, XIA T, QI Q, et al. Study on carbonation test and mechanical properties of concrete for waterproof sluice[J]. Water Conservancy Science and Technology and Economy, 2023, 29(3): 150-153 (in Chinese). [51] 魏豪杰, 童建军, 朱 龙, 等. 高温变温养护条件下隧道喷射混凝土抗碳化性能试验[J]. 四川建筑, 2022, 42(1): 190-192. WEI H J, TONG J J, ZHU L, et al. Experiment on carbonation resistance of tunnel shotcrete under high temperature and variable temperature curing conditions[J]. Sichuan Architecture, 2022, 42(1): 190-192 (in Chinese). [52] YANG Y H, XU G, TIAN B. Carbonation characteristics of cement-based materials under the uniform distribution of pore water[J]. Construction and Building Materials, 2021, 275: 121450. [53] 徐 兵, 徐 港, 杨亚会, 等. 孔隙水饱和度对混凝土碳化特性的影响[J]. 水电能源科学, 2018, 36(5): 87-90. XU B, XU G, YANG Y H, et al. Influence of pore water saturation on carbonization characteristics of concrete[J]. Water Resources and Power, 2018, 36(5): 87-90 (in Chinese). [54] HO D W S, LEWIS R K. Carbonation of concrete and its prediction[J]. Cement and Concrete Research, 1987, 17(3): 489-504. [55] SANJUÁN M A, ANDRADE C, CHEYREZY M. Concrete carbonation tests in natural and accelerated conditions[J]. Advances in Cement Research, 2003, 15(4): 171-180. [56] CASTELLOTE M, FERNANDEZ L, ANDRADE C, et al. Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations[J]. Materials and Structures, 2009, 42(4): 515-525. [57] 乔欣元. CO2浓度对氢氧化钙碳化性能的影响[J]. 广州化工, 2015, 43(15): 3-4+25. QIAO X Y. Influence of CO2 concentrations on carbonation property of Ca(OH)2[J]. Guangzhou Chemical Industry, 2015, 43(15): 3-4+25 (in Chinese). [58] XIE Y F, SUN T, SHUI Z H, et al. The impact of carbonation at different CO2 concentrations on the microstructure of phosphogypsum-based supersulfated cement paste[J]. Construction and Building Materials, 2022, 340: 127823. [59] XU G, SONG F J, PENG Y Z, et al. Influence of internal and external humidity difference on the distribution characteristics of the carbonated zone of cement-based materials[J]. Journal of Materials in Civil Engineering, 2023, 35(2). [60] MCPOLIN D O, BASHEER P A, LONG A E. Carbonation and pH in mortars manufactured with supplementary cementitious materials[J]. Journal of Materials in Civil Engineering, 2009, 21(5): 217-225. [61] MCPOLIN D O, BASHEER P A, LONG A E, et al. New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials[J]. Journal of Materials in Civil Engineering, 2007, 19(11): 936-946. [62] CHANG C F, CHEN J W. The experimental investigation of concrete carbonation depth[J]. Cement and Concrete Research, 2006, 36(9): 1760-1767. [63] 张 铖, 王 玲, 姚 燕, 等. 逐层磨粉pH值法测定混凝土碳化深度的试验研究[J]. 材料导报, 2022, 36(7): 174-177. ZHANG C, WANG L, YAO Y, et al. Determination of concrete carbonation depth by testing the pH value of layer-by-layer grinding concrete samples[J]. Materials Reports, 2022, 36(7): 174-177 (in Chinese). [64] 李 蓓, 金南国, 田 野, 等. 热重分析法在混凝土碳化深度检测中的应用[J]. 混凝土与水泥制品, 2020(10): 80-82+86. LI B, JIN N G, TIAN Y, et al. Application of thermogravimetric analysis method in detecting carbonation depth of concrete[J]. China Concrete and Cement Products, 2020(10): 80-82+86 (in Chinese). [65] 何小军, 张成维, 尚艳亮. 采用超声波法检测混凝土碳化深度的可行性分析[J]. 石家庄铁路职业技术学院学报, 2022, 21(1): 54-57. HE X J, ZHANG C W, SHANG Y L. Feasibility analysis of detecting carbonation depth of concrete by ultrasonic method[J]. Journal of Shijiazhuang Institute of Railway Technology, 2022, 21(1): 54-57 (in Chinese). [66] 杨亚会, 覃作舟, 徐 港, 等. 微型精密数显碳化测量仪的研发与应用[J]. 水电能源科学, 2017, 35(5): 172-174. YANG Y H, QIN Z Z, XU G, et al. Development and application of micro-precision digimatic carbonation measuring instrument[J]. Water Resources and Power, 2017, 35(5): 172-174 (in Chinese). [67] WI K, WANG K J, HAN J, et al. Effects of nano palm oil fuel ash on hydration of cement under the accelerated carbonation curing[J]. Materials Letters, 2022, 327: 132935. [68] WANG L, CHEN L, PROVIS J L, et al. Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas[J]. Cement and Concrete Composites, 2020, 106: 103489. [69] PHUNG Q T, MAES N, JACQUES D, et al. Effect of limestone fillers on microstructure and permeability due to carbonation of cement pastes under controlled CO2 pressure conditions[J]. Construction and Building Materials, 2015, 82: 376-390. [70] 苏 滔, 陈 犇, 农喻媚, 等. 含侵蚀性CO2地下水环境下混凝土的碳化试验方法对比分析[J]. 硅酸盐通报, 2020, 39(10): 3090-3100. SU T, CHEN B, NONG Y M, et al. Comparation of concrete carbonization experiment methods in corrosive CO2 groundwater environment[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3090-3100 (in Chinese). [71] LU Z, TAN Q H, LIN J L, et al. Properties investigation of recycled aggregates and concrete modified by accelerated carbonation through increased temperature[J]. Construction and Building Materials, 2022, 341: 127813. [72] XUAN D X, ZHAN B J, POON C S. Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates[J]. Cement and Concrete Composites, 2016, 65: 67-74. [73] SHI C J, LI Y K, ZHANG J K, et al. Performance enhancement of recycled concrete aggregate-a review[J]. Journal of Cleaner Production, 2016, 112: 466-472. [74] FANG Y F, CHANG J. Microstructure changes of waste hydrated cement paste induced by accelerated carbonation[J]. Construction and Building Materials, 2015, 76: 360-365. [75] FERNÁNDEZ B M, SIMONS S J R, HILLS C D, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. Journal of Hazardous Materials, 2004, 112(3): 193-205. |
[1] | LIU Yumei, YANG Lang, RAO Feng, ZHANG Kaiming, SUN Chuanlin. Research Progress of Chloride Ions on Corrosion of Marine Concrete Reinforcement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3059-3074. |
[2] | DENG Xianghui, ZHANG Peng, WANG Rui, WU Qiyuan, WANG Xu. Frost Resistance Durability and Damage Model of Fiber Concrete in Tibet Plateau Area [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3143-3153. |
[3] | WEI Yaping, LI Shaocheng, WANG Youzhi, TIAN Changjin. Synergistic Effect of Multi-Scale MgO Expansion Agent and SAP on Mechanical and Shrinkage Properties of UHPC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3154-3165. |
[4] | YUN Jianzhou, CHEN Shunchao, ZHENG Weilong, NIE Liangpeng, YUAN Shengtao. Influence of Age on Error of Concrete Member Tested by Ultrasonic-Rebound Combined Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3166-3175. |
[5] | LI Xueliang, ZHAO Qingchao, LI Weiguang, LI Yong, ZHU Yangge, SONG Houbin, YANG Hao, ZHANG Yanping. Influence Mechanism of Coal-Series Metakaolin on Mechanical Properties and Microstructure of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3221-3230. |
[6] | TONG Xiaogen, ZHANG Kaifeng, MENG Gang, ZHU Wangke, WANG Min, FU Wanzhang. Influence of Gold Tailing Composite Sand on Properties of Different Strength Grade Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3231-3239. |
[7] | PENG Man, GAO Yongtao, HAN Yang, CHEN Xiuli, KOU Xiongjun. Experimental Study on Mechanical Properties of Scrap Steel Fiber Reinforced Rubber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3286-3294. |
[8] | LIANG Wenjie, TAN Hongbo, LYU Zhouling. Research Progress on Endogenous Chloride Ion Binding of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2667-2682. |
[9] | CHU Hongyan, AN Yuanyuan, QIN Jianjian, JIANG Jinyang. Mechanical Properties and Microstructure of High Performance Lightweight Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2722-2732. |
[10] | CHE Zhihao, WANG Jiabin, ZHANG Kaifeng, FAN Yijie. Durability Degradation Law of Recycled Aggregate Concrete with Multiple Cementitious Materials System Subjected to Compound Salt Erosion [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2733-2742. |
[11] | WU Huiqin, LIU Xingchi, CHEN Yuliang. Cyclic Compression Performance and Constitutive Relationship of Carbon Fiber Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2743-2753. |
[12] | WANG Ercheng, LI Gege, CHAI Yingke, ZHANG Hongchun, LI Yancang, WANG Yanjie. Fracture Performance of Steel-Sisal Hybrid Fiber Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2754-2763. |
[13] | GONG Mingzi, PAN Axin, ZHANG Zilong, WANG Tao, RAO Xianpeng, CHEN Chen, HUANG Wei. Pull-Out Behaviour of Steel Fiber in Ultra-High Performance Fiber Reinforced Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2764-2772. |
[14] | FENG Yuchuan, JIA Xiaolong, HUI Yingxin, HAN Fangyuan, WAN Lei. Influences of Mother Rock Type and Stone Powder Content on Properties of Mechanism Sand Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2773-2780. |
[15] | LIU Chunyu, YUAN Yukun, LI Lili, FANG Guang, XU Kai. High Temperature Melting Treatment of Simulated Structural Concrete Nuclear Waste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2781-2786. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||