[1] 《中国公路学报》编辑部. 中国路基工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(3): 1-49. Editorial Department of China Journal of Highway and Transport. Review on China’s subgrade engineering research·2021[J]. China Journal of Highway and Transport, 2021, 34(3): 1-49 (in Chinese). [2] 袁小亚, 蒲云东, 桂尊曜, 等. 羟基化石墨烯对粉煤灰-水泥基复合材料性能的影响[J/OL]. 材料导报: 1-17 [2023-04-20]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230419.1556.012.html. YUAN X Y, PU Y D, GUI Z Y, et al. Effect of hydroxylated graphene on properties of fly ashcement matrix composites[J/OL]. Materials Reports: 1-17 [2023-04-20]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230419.1556.012.html (in Chinese). [3] 贾 岩. 流态水泥粉煤灰在台背回填中的应用研究[D]. 西安: 长安大学, 2009. JIA Y. Research on application of liquid cement flyash filled in bridge abutment[D]. Xi’an: Changan University, 2009 (in Chinese). [4] 黄志勤, 余云燕. 粉煤灰改良红层填料物理力学特性研究[J]. 科技与创新, 2022(20): 21-23. HUANG Z Q, YU Y Y. Study on physical and mechanical properties of red bed filler improved by fly ash[J]. Science and Technology & Innovation, 2022(20): 21-23 (in Chinese). [5] 陈立俊, 李 滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J/OL]. 材料导报, 2024(5): 1-13 [2023-05-14]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230316.1240.018.html. CHEN L J, LI Y, CHEN W H. Effects of recycled powder and mineral admixture on the mechanical properties and microstructure of concrete [J/OL]. Materials Reports, 2024(5): 1-13 [2023-04-19]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230316.1240.018.html (in Chinese). [6] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Interaction mechanism of carbide slag activating slag-fly ash composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [7] 刘 扬, 陈 湘, 王柏文, 等. 碱激发粉煤灰-矿渣-电石渣基地聚物的制备及强度机理[J]. 硅酸盐通报, 2023, 42(4): 1353-1362. LIU Y, CHEN X, WANG B W, et al. Preparation and strength mechanism of alkali-activated fly ash-slag-carbide slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1353-1362 (in Chinese). [8] 张腾腾, 王传林, 张宇轩, 等. 粉煤灰掺量对海水海砂高性能混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(5): 1677-1688. ZHANG T T, WANG C L, ZHANG Y X, et al. Effect of fly ash content on performance of high performance concrete with seawater and sea sand[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1677-1688 (in Chinese). [9] 马成畅, 徐斐熙, 杨 杨, 等. 大掺量粉煤灰混凝土早龄期拉伸徐变特性研究[J]. 浙江工业大学学报, 2023, 51(2): 131-138. MA C C, XU F X, YANG Y, et al. Study on tensile creep characteristics of high volume fly ash concrete at early ages[J]. Journal of Zhejiang University of Technology, 2023, 51(2): 131-138 (in Chinese). [10] 刘 军, 李振林, 张伟卓, 等.工业固体废弃物材料制作冷黏结人造轻骨料的研究进展[J/OL]. 材料导报, 2023(18): 1-31 [2023-04-19]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220919.1322.002.html. LIU J, LI Z L, ZHANG W Z, et al. Research advances in cold-bonded artificial lightweight aggregates made from industrial solid waste materials[J/OL]. Materials Reports, 2023(18): 1-31 [2023-04-19]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220919.1322.002.html (in Chinese). [11] 王家滨, 侯泽宇, 张凯峰, 等. 多元胶凝材料体系再生混凝土力学性能试验研究[J]. 材料导报, 2022, 36(12): 97-104. WANG J B, HOU Z Y, ZHANG K F, et al. Experiment research of mechanical properties on recycled aggregate concrete with multiple cementitious materials system[J]. Materials Reports, 2022, 36(12): 97-104 (in Chinese). [12] 张 扬, 陈 兵, 赵社戌, 等. 圆钢管粉煤灰混凝土短柱轴压试验的数值模拟[J]. 上海交通大学学报, 2017, 51(7): 769-773. ZHANG Y, CHEN B, ZHAO S X, et al. Numerical simulation of axially loaded circular steel tubular stub columns with fly ash concrete infill[J]. Journal of Shanghai Jiao Tong University, 2017, 51(7): 769-773 (in Chinese). [13] PETCHERDCHOO A, POCHALARD S, PIRIYAKUL K. Use of bender element tests for determining shear modulus of fly-ash and cement admixed Bangkok clay with considering unconfined compressive strength[J]. Case Studies in Construction Materials, 2023, 18: e02040. [14] 沈晴晴, 饶秋华, 易 威, 等. 水-力作用下红砂岩多裂纹宏-微观断裂机理研究[J/OL]. 铁道科学与工程学报: 1-11 [2023-04-20]. https://doi.org/10.19713/j.cnki.43-1423/u.T20222461. SHEN Q Q, RAO Q H, YI W, et al. Macro-micro fracture mechanism of multiple cracks in red sandstone under the action of hydraulic-mechanical[J/OL]. Journal of Railway Science and Engineering: 1-11 [2023-04-20]. https://doi.org/10.19713/j.cnki.43-1423/u.T20222461 (in Chinese). [15] 张欣茹, 邓庆田, 李新波, 等. 预制裂纹参数及相对密度对平面多孔结构裂纹扩展的影响[J]. 实验力学, 2023, 38(1): 68-80. ZHANG X R, DENG Q T, LI X B, et al. Influences of prefabricated crack parameters and relative density on crack propagation in planar cellular structures[J]. Journal of Experimental Mechanics, 2023, 38(1): 68-80 (in Chinese). [16] 赵毅功, 张小艳, 李 泽, 等. 随机微裂纹对岩石宏观裂纹扩展的影响规律研究[J/OL]. 工程力学: 1-14 [2023-04-20]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230223.1650.010.html. ZHAO Y G, ZHANG X Y, LI Z, et al. Effect of random microcracks on macroscopic crack propagation in rock[J/OL]. Engineering Mechanics: 1-14 [2023-04-20]. http://kns.cnki.net/kcms/detail/11.2595.O3.20230223.1650.010.html (in Chinese). [17] 李盛南, 肖 俊, 李 玉, 等. 基于细观裂纹扩展演化的岩石损伤本构模型研究[J]. 岩石力学与工程学报, 2023, 42(3): 640-648. LI S N, XIAO J, LI Y, et al. A new damage constitutive model of rock considering microscopic crack growth[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(3): 640-648 (in Chinese). [18] 梁东旭, 张 农, 荣浩宇. 交叉裂隙岩体裂纹扩展试验及混合有限-离散元数值模拟研究[J]. 岩土力学, 2023, 44(4): 1217-1229. LIANG D X, ZHANG N, RONG H Y. Experiment and hybrid finite-discrete element modelling of crack propagation in cross-fissured rock masses[J]. Rock and Soil Mechanics, 2023, 44(4): 1217-1229 (in Chinese). [19] LI X, YANG Y M, WANG J T, et al. Deformation of pavement subgrade subjected to traffic loads considering multi-direction principal stress rotation[J]. Soil Dynamics and Earthquake Engineering, 2022, 162: 107480. [20] 毛 娅, 郑 欢, 罗传威. 基于离散元法的粉煤灰水泥砌块密实度模拟研究[J]. 化工矿物与加工, 2020, 49(1): 36-40. MAO Y, ZHENG H, LUO C W. Simulation study on compactness of fly ash cement block based on discrete element method[J]. Industrial Minerals & Processing, 2020, 49(1): 36-40 (in Chinese). [21] ZHOU J L, ZHENG M L, ZHAN Q W, et al. Discrete element modelling of the uniaxial compression behavior of pervious concrete[J]. Case Studies in Construction Materials, 2023, 18: e01937. [22] 杨江坤, 宋彦琦, 马宏发, 等. 基于FDM-DEM耦合的岩石动态冲击特征方法[J]. 科学技术与工程, 2023, 23(10): 4309-4314. YANG J K, SONG Y Q, MA H F, et al. Dynamic rock impact characteristics based on FDM-DEM coupling method[J]. Science Technology and Engineering, 2023, 23(10): 4309-4314 (in Chinese). [23] 常西亚, 卢爱红, 胡善超, 等. 孔隙率对混凝土力学性能及能量耗散的影响研究[J]. 新型建筑材料, 2019, 46(4): 12-15. CHANG X Y, LU A H, HU S C, et al. Influence of porosity on mechanical properties and energy dissipation of concrete[J]. New Building Materials, 2019, 46(4): 12-15 (in Chinese). [24] 刘子龙, 马士宾, 贺 苗, 等. 基于离散元法的水泥稳定碎石微裂细观机理研究[J/OL]. 土木与环境工程学报(中英文): 1-10 [2023-04-20]. http://kns.cnki.net/kcms/detail/50.1218.TU.20221220.1822.002.html. LIU Z L, MA S B, HE M, el at. Micro-cracking mechanism of cement stabilized macadam based on discrete element method [J/OL]. Journal of Civil and Environmental Engineering: 1-10 [2023-04-20]. http://kns.cnki.net/kcms/detail/50.1218.TU.20221220.1822.002.html (in Chinese). [25] 张 亮, 王桂林, 雷瑞德, 等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制[J]. 中国公路学报, 2021, 34(1): 24-34. ZHANG L, WANG G L, LEI R D, et al. Energy damage evolution mechanism of single jointed rock mass with different lengths under uniaxial compression[J]. China Journal of Highway and Transport, 2021, 34(1): 24-34 (in Chinese). [26] 王大鹏, 吴 凯. 不同养护条件下玄武岩纤维混凝土动态压缩力学特性及能量耗散研究[J]. 工业建筑, 2023, 53(4): 173-179. WANG D P, WU K. Dynamic compression mechanical characteristics and energy dissipation law of basalt fiber reinforced concrete under different curing conditions[J]. Industrial Construction, 2023, 53(4): 173-179 (in Chinese). |