[1] 卢彩霞, 赵 辉. 壳牌气化炉堵渣原因分析及处理[J]. 化学工程与装备, 2023, 313(2): 179-180. LU C X, ZHAO H. Analysis and treatment of causes of slag plugging in shell gasifiers[J]. Chemical Engineering & Equipment, 2023, 313(2): 179-180 (in Chinese). [2] 张晶晶. 五环气化炉堵渣原因及处理措施[J]. 氮肥技术, 2022, 43(5): 33-35 ZHANG J J. Causes and treatment measures of slag blocking of gasifier[J]. Danfei Jishu, 2022, 43(5): 33-35 (in Chinese). [3] 徐荣声. 煤中矿物质在热转化过程中的演化行为[D]. 北京: 中国矿业大学(北京), 2016. XU R S. Evolution behavior of minerals in coal during thermal transformation[D]. Beijing: China University of Mining & Technology, Beijing, 2016 (in Chinese). [4] 曹真真, 马军志, 孟 雪, 等. 浅析煤质管理对水煤浆气化稳定运行的影响[J]. 氮肥与合成气, 2023, 51(1): 3-5+11. CAO Z Z, MA J Z, MENG X, et al. Analysis on the influence of coal quality management on the stable operation of coal water slurry gasification[J]. Nitrogenous Fertilizer and Syngas, 2023, 51(1): 3-5+11 (in Chinese). [5] 刘 涛, 李新新, 王伟林, 等. 煤灰熔融性的影响因素及其调控[J]. 山东科技大学学报(自然科学版), 2014, 33(4): 43-49. LIU T, LI X X, WANG W L, et al. The affecting factors and regulation of ash fusion characteristics[J]. Journal of Shandong University of Science and Technology (Natural Science), 2014, 33(4): 43-49 (in Chinese). [6] 贺 冲, 白 进, 郭 晶, 等. 气氛和化学组成对高铁煤灰熔融特性的影响机理[J]. 化工学报, 2022, 73(10): 4648-4658. HE C, BAI J, GUO J, et al. Effects of atmosphere and chemical composition on fusion characteristics of high-iron coal ash[J]. CIESC Journal, 2022, 73(10): 4648-4658 (in Chinese). [7] 白 进, 李 文, 李保庆. 高温弱还原气氛下煤中矿物质变化的研究[J]. 燃料化学学报, 2006, 34(3): 292-297. BAI J, LI W, LI B Q. Mineral behavior in coal under reducing atmosphere at high temperature[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3): 292-297 (in Chinese). [8] 王岩凰. 煤灰中化学成分对煤灰熔融性的影响[J]. 内蒙古石油化工, 2020, 46(9): 42-43. WANG Y H. Effect of chemical composition in coal ash on its fusibility[J]. Inner Mongolia Petrochemical Industry, 2020, 46(9): 42-43 (in Chinese). [9] 董子铮, 鲍笑丹, 沈中杰, 等. 不同气体组分条件下煤灰颗粒熔融特性研究[J]. 煤炭转化, 2023(3): 49-59. DONG Z Z, BAO X D, SHEN Z J, et al. Study on melting characteristics of coal ash particles in different atmospheres[J]. Coal Conversion, 2023(3): 49-59 (in Chinese). [10] REINMÖLLER M, KLINGER M, SCHREINER M, et al. Relationship between ash fusion temperatures of ashes from hard coal, brown coal, and biomass and mineral phases under different atmospheres: a combined FactSageTM computational and network theoretical approach[J]. Fuel, 2015, 151: 118-123. [11] HUFFMAN G P, HUGGINS F E, DUNMYRE G R. Investigation of the high-temperature behaviour of coal ash in reducing and oxidizing atmospheres[J]. Fuel, 1981, 60(7): 585-597. [12] MUKHERJEE S, SRIVASTAVA S K. Minerals transformations in northeastern region coals of India on heat treatment[J]. Energy & Fuels, 2006, 20(3): 1089-1096. [13] 武成利, 王蓓蓓, 陶 然, 等. 利用拉曼光谱研究助熔剂对煤灰矿物转化行为影响[J]. 硅酸盐通报, 2017, 36(11): 3791-3796+3809. WU C L, WANG B B, TAO R, et al. Influences of flux on the mineral conversion of coal ash by Raman spectroscopy[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(11): 3791-3796+3809 (in Chinese). [14] 龚宇森, 许天瑶. 准东煤灰的矿物转化及熔融机理[J]. 能源与节能, 2020(2): 37-39. GONG Y S, XU T Y. Mineral transformation and melting mechanism of Zhundong coal ash[J]. Energy and Conservation, 2020(2): 37-39 (in Chinese). [15] BAI J, LI W, LI B Q. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008, 87(4/5): 583-591. [16] WU H, WANG J J, LIU X, et al. Effects of phosphorous-based additive on flow properties of high silicon-aluminum coal ash[J]. Fuel, 2022, 328: 125238. [17] COLOMBAN P. Polymerization degree and Raman identification of ancient glasses used for jewelry, ceramic enamels and mosaics[J]. Journal of Non-Crystalline Solids, 2003, 323(1/2/3): 180-187. [18] MA F R, WEI B, WANG J J, et al. Influence mechanism of Na2O on the network structure depolymerization of ZD coal ash silicate under high temperature[J]. Journal of Non-Crystalline Solids, 2022, 584: 121507. [19] 玄伟伟. 非牛顿煤灰熔渣结晶过程及动力学实验研究[D]. 北京: 清华大学, 2015. XUAN W W. Experimental study on crystallization process and kinetics of non-Newtonian coal ash slag[D]. Beijing: Tsinghua University, 2015 (in Chinese). [20] 沈中杰. 高温熔渣界面结晶及沉积颗粒反应机理[D]. 上海: 华东理工大学, 2017. SHEN Z J. Reaction mechanism of crystallization and deposition particles at the interface of high temperature slag[D]. Shanghai: East China University of Science and Technology, 2017 (in Chinese). [21] 龚宇森. 准东煤灰熔融-烧结-流变特性的研究[D]. 武汉: 华中科技大学, 2020. GONG Y S. Study on melting-sintering-rheological characteristics of Zhundong coal ash[D]. Wuhan: Huazhong University of Science and Technology, 2020 (in Chinese). [22] 赵超越, 李风海, 马名杰. 硅酸盐熔体结构对煤灰黏温特性调控研究进展[J]. 应用化工, 2021, 50(7): 1938-1941+1946. ZHAO C Y, LI F H, MA M J. Review on the regulation of viscosity-temperature characteristics from silicate melt structure variation[J]. Applied Chemical Industry, 2021, 50(7): 1938-1941+1946 (in Chinese). |