BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2023, Vol. 42 ›› Issue (10): 3579-3593.
Previous Articles Next Articles
HE Min1,2,3, YANG Zongbao1,2, LI Zhaochao1,2, OU Zhihua1,2, OU Manli1,2, YANG Tony3
Received:
2023-06-07
Revised:
2023-08-04
Online:
2023-10-15
Published:
2023-10-17
CLC Number:
HE Min, YANG Zongbao, LI Zhaochao, OU Zhihua, OU Manli, YANG Tony. Research Progress on Reaction Mechanism and Mechanical Properties of Aluminosilicate Phosphate Geopolymers[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(10): 3579-3593.
[1] 陶文宏, 付兴华, 孙凤金, 等. 地聚物胶凝材料性能与聚合机理的研究[J]. 硅酸盐通报, 2008, 27(4): 730-735+739. TAO W H, FU X H, SUN F J, et al. Studies on properties and mechanisms of geopolymer cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2008, 27(4): 730-735+739 (in Chinese). [2] 周 显, 胡 波, 童 军, 等. 赤泥基土壤聚合物固化重金属的机理研究[J]. 岩土工程学报, 2020, 42(增刊1): 239-243. ZHOU X, HU B, TONG J, et al. Mechanism of heavy metal stabilization by red mud-based geopolymer[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(supplement 1): 239-243 (in Chinese). [3] 卢 灿. 磷酸盐矿物键合材料的制备及其机理研究[D]. 深圳: 深圳大学, 2016: 1-2. LU C. Preparation and mechanism of phosphate minerals bonding materials[D]. Shenzhen: Shenzhen University, 2016: 1-2 (in Chinese). [4] DAVIDOVITS J. Synthesis of new high-temperature geo-polymers for reinforced plastic/composites[C]. PACTEC 79 Society of Plastics Engineers, 1979: 151-154. [5] ZHAO J H, TONG L Y, LI B E, et al. Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment[J]. Journal of Cleaner Production, 2021, 307: 127085. [6] MAJDOUBI H, MAKHLOUF R, HADDAJI Y, et al. Valorization of phosphogypsum waste through acid geopolymer technology: synthesis, characterization, and environmental assessment[J]. Construction and Building Materials, 2023, 371: 130710. [7] MARSH A, HEATH A, PATUREAU P, et al. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals[J]. Applied Clay Science, 2018, 166: 250-261. [8] SEDMALE G, RANDERS M, RUNDANS M, et al. Application of differently treated illite and illite clay samples for the development of ceramics[J]. Applied Clay Science, 2017, 146: 397-403. [9] BERNASCONI D, VIANI A, ZÁRYBNICKÁ L, et al. Phosphate-based geopolymer: influence of municipal solid waste fly ash introduction on structure and compressive strength[J]. Ceramics International, 2023, 49(13): 22149-22159. [10] SASUI S S, KIM G, NAM J, et al. Strength and microstructure of class-C fly ash and GGBS blend geopolymer activated in NaOH&NaOH+Na2SiO3[J]. Materials, 2019, 13(1): 59. [11] DJOBO J, STEPHAN D, ELIMBI A. Setting and hardening behavior of volcanic ash phosphate cement[J]. Journal of Building Engineering, 2020, 31: 101427. [12] KUMAR P K, SRINIVASU K. Influence of GGBS and concentration of sodium hydroxide on strength behavior of geopolymer mortar[J]. Materials Today: Proceedings, 2022, 65: 702-706. [13] ZULKIFLY K, HEAH C Y, LIEW Y M, et al. Effect of phosphate addition on room-temperature-cured fly ash-metakaolin blend geopolymers[J]. Construction and Building Materials, 2021, 270: 121486. [14] WANG Y S, ALREFAEI Y, DAI J G. Influence of coal fly ash on the early performance enhancement and formation mechanisms of silico-aluminophosphate geopolymer[J]. Cement and Concrete Research, 2020, 127: 105932. [15] MA S, ZHANG Z, LIU X. Comprehensive understanding of aluminosilicate phosphate geopolymers: a critical review[J]. Materials, 2022, 15(17): 5961. [16] DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [17] KHALE D, CHAUDHARY R. Mechanism of geopolymerization and factors influencing its development: a review[J]. Journal of Materials Science, 2007, 42(3): 729-746. [18] YAO X, ZHANG Z H, ZHU H J, et al. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry[J]. Thermochimica Acta, 2009, 493(1/2): 49-54. [19] MUÑIZ-VILLARREAL M S, MANZANO-RAMÍREZ A, SAMPIERI-BULBARELA S, et al. The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer[J]. Materials Letters, 2011, 65(6): 995-998. [20] KUMAR A, KUMAR S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization[J]. Construction and Building Materials, 2013, 38: 865-871. [21] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [22] NATH S K, MUKHERJEE S, MAITRA S, et al. Ambient and elevated temperature geopolymerization behaviour of class F fly ash[J]. Transactions of the Indian Ceramic Society, 2014, 73(2): 126-132. [23] BAJPAI R, CHOUDHARY K, SRIVASTAVA A, et al. Environmental impact assessment of fly ash and silica fume based geopolymer concrete[J]. Journal of Cleaner Production, 2020, 254: 120147. [24] GAO L, ZHENG Y X, TANG Y, et al. Effect of phosphoric acid content on the microstructure and compressive strength of phosphoric acid-based metakaolin geopolymers[J]. Heliyon, 2020, 6(4): e03853. [25] KHABBOUCHI M, HOSNI K, MEZNI M, et al. Interaction of metakaolin-phosphoric acid and their structural evolution at high temperature[J]. Applied Clay Science, 2017, 146: 510-516. [26] RAVEN K P, LOEPPERT R H. Microwave digestion of fertilizers and soil amendments[J]. Communications in Soil Science and Plant Analysis, 1996, 27(18/19/20): 2947-2971. [27] BARTOS J M, MULLINS G L, SIKORA F J, et al. Availability of phosphorus in the water-insoluble fraction of monoammonium phosphate fertilizers[J]. Soil Science Society of America Journal, 1991, 55(2): 539-543. [28] WAGH A S. Chemically bonded phosphate ceramics-a novel class of geopolymers[C]//Advances in Ceramic Matrix Composites X: Proceedings of the 106th Annual Meeting of the American Ceramic Society. Indiana: Ceramic Transactions, 2004: 107. [29] PU S Y, ZHU Z D, SONG W L, et al. Mechanical and microscopic properties of fly ash phosphoric acid-based geopolymer paste: a comprehensive study[J]. Construction and Building Materials, 2021, 299: 123947. [30] DJOBO J N Y, NKWAJU R Y. Preparation of acid aluminum phosphate solutions for metakaolin phosphate geopolymer binder[J]. RSC Advances, 2021, 11(51): 32258-32268. [31] GUO C M, WANG K T, LIU M Y, et al. Preparation and characterization of acid-based geopolymer using metakaolin and disused polishing liquid[J]. Ceramics International, 2016, 42(7): 9287-9291. [32] 曹德光, 苏达根, 路 波, 等. 偏高岭石-磷酸基矿物键合材料的制备与结构特征[J]. 硅酸盐学报, 2005, 33(11)1385-1389. CAO D G, SU D G, LU B, et al. Synthesis and structure characterization of geopolymeric material based on metakaolinite and phosphoric acid[J]. Journal of the Chinese Ceramic Society, 2005, 33(11): 1385-1389 (in Chinese). [33] 刘乐平. 磷酸基地质聚合物的反应机理与应用研究[D]. 南宁: 广西大学, 2012: 24-73. LIU L P. Study on reaction mechanism and application of phosphate-based polymers[D]. Nanning: Guangxi University, 2012: 24-73 (in Chinese). [34] 何 流, 马 雪, 李良锋, 等. Al2O3·nSiO2-mH3PO4磷酸基地质聚合物的制备与结构表征[J]. 人工晶体学报, 2018, 47(12): 2527-2533. HE L, MA X, LI L F, et al. Preparation and structural characterization of Al2O3·nSiO2-mH3PO4 phosphoric acid-based geopolymer[J]. Journal of Synthetic Crystals, 2018, 47(12): 2527-2533 (in Chinese). [35] LOUATI S, BAKLOUTI S, SAMET B. Acid based geopolymerization kinetics: effect of clay particle size[J]. Applied Clay Science, 2016, 132/133: 571-578. [36] ZRIBI M, BAKLOUTI S. Investigation of phosphate based geopolymers formation mechanism[J]. Journal of Non-Crystalline Solids, 2021, 562: 120777. [37] TCHAKOUTÉ H K, RÜSCHER C H, KAMSEU E, et al. The influence of gibbsite in kaolin and the formation of berlinite on the properties of metakaolin-phosphate-based geopolymer cements[J]. Materials Chemistry and Physics, 2017, 199: 280-288. [38] TCHAKOUTÉ H K, RÜSCHER C H. Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: a comparative study[J]. Applied Clay Science, 2017, 140: 81-87. [39] DOUIRI H, LOUATI S, BAKLOUTI S, et al. Structural, thermal and dielectric properties of phosphoric acid-based geopolymers with different amounts of H3PO4[J]. Materials Letters, 2014, 116: 9-12. [40] TCHAKOUTÉ H K, RÜSCHER C H, KAMSEU E, et al. Influence of the molar concentration of phosphoric acid solution on the properties of metakaolin-phosphate-based geopolymer cements[J]. Applied Clay Science, 2017, 147: 184-194. [41] MORSY M S, RASHAD A M, SHOUKRY H, et al. Potential use of limestone in metakaolin-based geopolymer activated with H3PO4 for thermal insulation[J]. Construction and Building Materials, 2019, 229: 117088. [42] LOUATI S, BAKLOUTI S, SAMET B. Geopolymers based on phosphoric acid and illito-kaolinitic clay[J]. Advances in Materials Science and Engineering, 2016, 2016: 1-7. [43] MATHIVET V, JOUIN J, GHARZOUNI A, et al. Acid-based geopolymers: understanding of the structural evolutions during consolidation and after thermal treatments[J]. Journal of Non-Crystalline Solids, 2019, 512: 90-97. [44] WANG Y S, DAI J G, DING Z, et al. Phosphate-based geopolymer: formation mechanism and thermal stability[J]. Materials Letters, 2017, 190: 209-212. [45] PERERA D S, HANNA J V, DAVIS J, et al. Relative strengths of phosphoric acid-reacted and alkali-reacted metakaolin materials[J]. Journal of Materials Science, 2008, 43(19): 6562-6566. [46] LIN H, LIU H, LI Y, et al. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures[J]. Cement and Concrete Research, 2021, 144: 106425. [47] DONG T, XIE S B, WANG J S, et al. Properties and characterization of a metakaolin phosphate acid-based geopolymer synthesized in a humid environment[J]. Journal of the Australian Ceramic Society, 2020, 56(1): 175-184. [48] CELERIER H, JOUIN J, TESSIER-DOYEN N, et al. Influence of various metakaolin raw materials on the water and fire resistance of geopolymers prepared in phosphoric acid[J]. Journal of Non-Crystalline Solids, 2018, 500: 493-501. [49] GUO H Z, YUAN P, ZHANG B F, et al. Realization of high-percentage addition of fly ash in the materials for the preparation of geopolymer derived from acid-activated metakaolin[J]. Journal of Cleaner Production, 2021, 285: 125430. [50] KATSIKI A, HERTEL T, TYSMANS T, et al. Metakaolinite phosphate cementitious matrix: inorganic polymer obtained by acidic activation[J]. Materials, 2019, 12(3): 442. [51] 何 流. 磷酸基地质聚合物的结构演变及固化模拟核素研究[D]. 绵阳: 西南科技大学, 2019: 17-21. HE L. Study on structural evolution and curing simulated nuclides of phosphate-based polymers[D]. Mianyang: Southwest University of Science and Technology, 2019: 17-21 (in Chinese). [52] WANG Y S, PROVIS J L, DAI J G. Role of soluble aluminum species in the activating solution for synthesis of silico-aluminophosphate geopolymers[J]. Cement and Concrete Composites, 2018, 93: 186-195. [53] ZRIBI M, SAMET B, BAKLOUTI S. Effect of curing temperature on the synthesis, structure and mechanical properties of phosphate-based geopolymers[J]. Journal of Non-Crystalline Solids, 2019, 511: 62-67. [54] BEWA C N, TCHAKOUTÉ H K, BANENZOUÉ C, et al. Acid-based geopolymers using waste fired brick and different metakaolins as raw materials[J]. Applied Clay Science, 2020, 198: 105813. [55] ZHANG B F, GUO H Z, DENG L L, et al. Undehydrated kaolinite as materials for the preparation of geopolymer through phosphoric acid-activation[J]. Applied Clay Science, 2020, 199: 105887. [56] HE Y, LIU L P, HE L P, et al. Characterization of chemosynthetic H3PO4-Al2O3-2SiO2 geopolymers[J]. Ceramics International, 2016, 42(9): 10908-10912. [57] BEWA C N, TCHAKOUTÉ H K, RÜSCHER C H, et al. Influence of the curing temperature on the properties of poly(phospho-ferro-siloxo) networks from laterite[J]. SN Applied Sciences, 2019, 1(8): 1-12. [58] POUGNONG T E, BELIBI P D B, BAENLA J, et al. Effects of chemical composition of amorphous phase on the reactivity of phosphoric acid activation of volcanic ashes[J]. Journal of Non-Crystalline Solids, 2022, 575: 121213. [59] MAHYAR M, ERDOĞAN S T. Phosphate-activated high-calcium fly ash acid-base cements[J]. Cement and Concrete Composites, 2015, 63: 96-103. [60] HE M, YANG Z B, LI N, et al. Strength, microstructure, CO2 emission and economic analyses of low concentration phosphoric acid-activated fly ash geopolymer[J]. Construction and Building Materials, 2023, 374: 130920. [61] PU S Y, ZHU Z D, SONG W L, et al. A eco-friendly acid fly ash geopolymer with a higher strength[J]. Construction and Building Materials, 2022, 335: 127450. [62] WANG Y S, ALREFAEI Y, DAI J G. Improvement of early-age properties of silico-aluminophosphate geopolymer using dead burnt magnesia[J]. Construction and Building Materials, 2019, 217: 1-11. [63] CELERIER H, JOUIN J, MATHIVET V, et al. Composition and properties of phosphoric acid-based geopolymers[J]. Journal of Non-Crystalline Solids, 2018, 493: 94-98. [64] ZAHID M, SHAFIQ N, NURUDDIN M F, et al. Effect of partial replacement of fly ash by metakaolin on strength development of fly ash based geopolymer mortar[J]. Key Engineering Materials, 2017, 744: 131-135. [65] ZHANG B F, GUO H Z, YUAN P, et al. Novel acid-based geopolymer synthesized from nanosized tubular halloysite: the role of precalcination temperature and phosphoric acid concentration[J]. Cement and Concrete Composites, 2020, 110: 103601. [66] WANG M R, JIA D C, HE P G, et al. Influence of calcination temperature of kaolin on the structure and properties of final geopolymer[J]. Materials Letters, 2010, 64(22): 2551-2554. [67] DEROUICHE R, BAKLOUTI S. Phosphoric acid based geopolymerization: effect of the mechanochemical and the thermal activation of the kaolin[J]. Ceramics International, 2021, 47(10): 13446-13456. [68] 翁履谦, KWESI S, 宋申华, 等. 地质聚合物合成中铝酸盐组分的作用机制(英文)[J]. 硅酸盐学报, 2005, 33(3): 276-280. WENG L Q, KWESI S, SONG S H, et al. Hydrolysis kinetics of aluminates in geopolymers synthesis[J]. Journal of the Chinese Ceramic Society, 2005, 33(3): 276-280. [69] 郭昌明. 以失效磷酸基抛光液为激发剂制备地质聚合物的研究与应用[D]. 南宁: 广西大学, 2016: 106. GUO C M. Research and application of geopolymer preparation with spent phosphate-based polishing solution as activator[D]. Nanning: Guangxi University, 2016: 106 (in Chinese). [70] MATHIVET V, JOUIN J, PARLIER M, et al. Control of the alumino-silico-phosphate geopolymers properties and structures by the phosphorus concentration[J]. Materials Chemistry and Physics, 2021, 258: 123867. [71] ZRIBI M, SAMET B, BAKLOUTI S. Mechanical, microstructural and structural investigation of phosphate-based geopolymers with respect to P/Al molar ratio[J]. Journal of Solid State Chemistry, 2020, 281: 121025. [72] LOUATI S, HAJJAJI W, BAKLOUTI S, et al. Structure and properties of new eco-material obtained by phosphoric acid attack of natural Tunisian clay[J]. Applied Clay Science, 2014, 101: 60-67. [73] 邢书银. 利用粉煤灰制备地质聚合物的实验研究[D]. 西宁: 青海大学, 2016: 40-47. XING S Y. Experimental study on preparation of geopolymer from fly ash[D]. Xining: Qinghai University, 2016: 40-47 (in Chinese). [74] 董 腾, 邹艺璇, 宋 培, 等. 微波养护偏高岭土磷酸基地聚物的特征与表征[J]. 中国粉体技术, 2020, 26(4): 52-58. DONG T, ZOU Y X, SONG P, et al. Characteristics and characterization of metakaolin phosphoric acid-based geopolymer cured by microwave[J]. China Powder Science and Technology, 2020, 26(4): 52-58 (in Chinese). [75] 佟 钰, 夏 枫, 张 婷, 等. 微波加热对地聚物砂浆力学强度的影响[J]. 沈阳建筑大学学报(自然科学版), 2015, 31(2): 313-319. TONG Y, XIA F, ZHANG T, et al. Influence of microwave heating on mechanical strength of geopolymer-based mortar[J]. Journal of Shenyang Jianzhu University (Natural Science), 2015, 31(2): 313-319 (in Chinese). [76] 姚正珍. 磷酸基地聚合物的制备及耐高温耐腐蚀性能研究[D]. 绵阳: 西南科技大学, 2020: 10-22. YAO Z Z. Preparation of phosphoric acid-based polymer and study on its high temperature resistance and corrosion resistance[D]. Mianyang: Southwest University of Science and Technology, 2020: 10-22 (in Chinese). [77] KAZE C R, LECOMTE-NANA G L, KAMSEU E, et al. Mechanical and physical properties of inorganic polymer cement made of iron-rich laterite and lateritic clay: a comparative study[J]. Cement and Concrete Research, 2021, 140: 106320. [78] DJOBO J N Y, STEPHAN D. The reaction of calcium during the formation of metakaolin phosphate geopolymer binder[J]. Cement and Concrete Research, 2022, 158: 106840. [79] LI J C, SUN Z G, WANG L, et al. Properties and mechanism of high-magnesium nickel slag-fly ash based geopolymer activated by phosphoric acid[J]. Construction and Building Materials, 2022, 345: 128256. [80] WAGH A S, JEONG S Y. Chemically bonded phosphate ceramics: I, a dissolution model of formation[J]. Journal of the American Ceramic Society, 2003, 86(11): 1838-1844. [81] CHERKI EL IDRISSI A, ROZIERE E, LOUKILI A, et al. Design of geopolymer grouts: the effects of water content and mineral precursor[J]. European Journal of Environmental and Civil Engineering, 2018, 22(5): 628-649. [82] NG Y S, LIEW Y M, HEAH C Y, et al. Improvements of flexural properties and thermal performance in thin geopolymer based on fly ash and ladle furnace slag using borax decahydrates[J]. Materials, 2022, 15(12): 4178. [83] LIU H J, SANJAYAN J G, BU Y H. The application of sodium hydroxide and anhydrous borax as composite activator of class F fly ash for extending setting time[J]. Fuel, 2017, 206: 534-540. [84] NUAKLONG P, JANPRASIT K, JONGVIVATSAKUL P. Enhancement of strengths of high-calcium fly ash geopolymer containing borax with rice husk ash[J]. Journal of Building Engineering, 2021, 40: 102762. [85] 杨 涛. 碳纳米管修饰聚酰亚胺纤维增强磷酸基地质聚合物力学性能和介电性能的研究[D]. 北京: 北京化工大学, 2017: 20-30. YANG T. Study on mechanical properties and dielectric properties of carbon nanotubes modified polyimide fiber reinforced phosphate-based polymers[D]. Beijing: Beijing University of Chemical Technology, 2017: 20-30 (in Chinese). [86] YU C Q, YU Y R, ZHAO Y M, et al. Mechanical properties and in situ fracture behavior of SiO2f/phosphate geopolymer composites[J]. Rare Metals, 2020, 39(5): 562-569. [87] HE P G, JIA L Y, MA G R, et al. Effects of fiber contents on the mechanical and microwave absorbent properties of carbon fiber felt reinforced geopolymer composites[J]. Ceramics International, 2018, 44(9): 10726-10734. [88] DING Z, LU C, CUI P, et al. Primal study on mechanical properties of phosphate based geopolymer[J]. Key Engineering Materials, 2017, 726: 490-494. |
[1] | GUO Zheng, MU Song, ZHUANG Zhijie, ZHANG Hao, ZHANG Lei. Research Progress on Properties of Cement-Based Materials under Medium or High Vacuum Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3075-3082. |
[2] | DENG Yonggang, DAI Tingting, SUN Chen, YANG Yuanquan. Effect of Zeolite Powder on Hydration Properties of Potassium Magnesium Phosphate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3083-3088. |
[3] | CHEN Youzhi, WU Xiuqi, YIN Weisong, LI Wanmin, TANG Shichang. Effect of Calcium Carbide Residue on Mechanical Properties and Microstructure of Composite Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3196-3203. |
[4] | LI Xueliang, ZHAO Qingchao, LI Weiguang, LI Yong, ZHU Yangge, SONG Houbin, YANG Hao, ZHANG Yanping. Influence Mechanism of Coal-Series Metakaolin on Mechanical Properties and Microstructure of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3221-3230. |
[5] | GUO Zhixiang, WANG Qin, ZHANG Qiuchen, ZHENG Haiyu, LIU Kejun. Effect of Fluoride on Structure and Properties of Gypsum-Based Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3248-3257. |
[6] | YANG Yibo, LIANG Songsuo, LIU Fucai, XIE Rui, OU Jinsheng, GUO Wenying, WANG Hengchang. Effect and Mechanism of Low Water Absorption Ceramic Recycled Sand on Mechanical and Drying Shrinkage Properties of Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3277-3285. |
[7] | PENG Man, GAO Yongtao, HAN Yang, CHEN Xiuli, KOU Xiongjun. Experimental Study on Mechanical Properties of Scrap Steel Fiber Reinforced Rubber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3286-3294. |
[8] | YUAN Zhiyong, ZHANG Xueri, LI Kai, XU Chengming, WU Jiali, LIAO Cangdong, ZHENG Meng, WU Yinghao, YAN Faqiang. Evolution of Composition, Structure and Mechanical Properties of High Alumina Porcelain with Sintering Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3315-3323. |
[9] | SONG Zixian, WEN Jianhua. Performance of 3MTM Solid Ceramic Microspheres in Porcelain Replenishment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3342-3349. |
[10] | LI Xiaodong, TENG Yiwei, ZHAO Jianning, YAN Sheng, YANG Jianrong, JIA Xiaolong. Preparation and Pavement Performance of High Dosage Coal Gasification Slag Stabilized Base Mixture [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3412-3420. |
[11] | CHU Hongyan, AN Yuanyuan, QIN Jianjian, JIANG Jinyang. Mechanical Properties and Microstructure of High Performance Lightweight Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2722-2732. |
[12] | ZHOU Libo, CHEN Ping, HU Cheng, RONG Beiguo, ZHANG Jian, LIANG Xiang, XIA Haiyang, LIANG Zhifeng. Hydration Hardening Characteristics of Steel Slag-Red Mud-Cement Based Composite Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2837-2845. |
[13] | WANG Chenggang, LIU Yaowei, WANG Shuai, MA Binghui, BI Gonghua. Mechanical Properties and Durability of Double-DopedSteel Slag Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2846-2855. |
[14] | SUN Chuhan, WANG Honglei, ZHOU Xingui. Research Progress on Ultra-High Temperature Ceramics Powder Prepared by Precursor-Derived Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2865-2880. |
[15] | WANG Jiayi, WANG Tao, NIE Yunpeng, WANG Qi. Preparation and Properties of IP6-HA Modified Magnesiu Phosphate Based Composite Bone Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2888-2894. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||