[1] JENSEN O M, HANSEN P F. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste[J]. Cement and Concrete Research, 1999, 29(4): 567-575. [2] JENSEN O M, HANSEN P F. Water-entrained cement-based materialsⅠ. Principles and theoretical background[J]. Cement and Concrete Research, 2001, 31(4): 647-654. [3] JENSEN O M, HANSEN P F. Water-entrained cement-based materialsⅡ. Experimental observations[J]. Cement and Concrete Research, 2002, 32(6): 973-978. [4] SCHRÖFL C, SNOECK D, MECHTCHERINE V. A review of characterisation methods for superabsorbent polymer (SAP) samples to be used in cement-based construction materials: report of the RILEM TC 260-RSC[J]. Materials and Structures, 2017, 50(4): 197. [5] 陈雪萍, 翁志学, 黄志明. 高吸水性树脂的结构与吸水机理[J]. 化工新型材料, 2002, 30(3): 19-21. CHEN X P, WENG Z X, HUANG Z M. Structure and water absorbing mechanisms of superabsorbent resin[J]. New Chemical Materials, 2002, 30(3): 19-21 (in Chinese). [6] 邵 力. 高吸水性树脂(SAP)对自密实混凝土性能的影响[D]. 广州: 广州大学, 2018. SHAO L. Effect of super absorbent resin (SAP) on properties of self-compacting concrete[D]. Guangzhou: Guangzhou University, 2018 (in Chinese). [7] 童彦伟. 高吸水性树脂对水泥砂浆性能影响的研究[D]. 杭州: 浙江大学, 2018. TONG Y W. Study on the influence of super absorbent resin on the properties of cement mortar[D]. Hangzhou: Zhejiang University, 2018 (in Chinese). [8] 邬一凡. 高吸水性树脂研究进展及发展趋势[J]. 化工新型材料, 2019, 47(5): 23-26+31. WU Y F. Progression and development trend of production technology of super absorbent polymer[J]. New Chemical Materials, 2019, 47(5): 23-26+31 (in Chinese). [9] 孔祥明, 张珍林. 高吸水性树脂对高强混凝土自收缩的减缩机理[J]. 硅酸盐学报, 2014, 42(2): 150-155. KONG X M, ZHANG Z L. Shrinkage-reducing mechanism of super-absorbent polymer in high-strength concrete[J]. Journal of the Chinese Ceramic Society, 2014, 42(2): 150-155 (in Chinese). [10] 胡曙光, 周宇飞, 王发洲, 等. 高吸水性树脂颗粒对混凝土自收缩与强度的影响[J]. 华中科技大学学报(城市科学版), 2008, 25(1): 1-4+16. HU S G, ZHOU Y F, WANG F Z, et al. Effect of super absorbent polymer particles on autogenous shrinkage and compressive strength of concrete[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2008, 25(1): 1-4+16 (in Chinese). [11] KÖKSAL F, ŞAHIN Y, GENCEL O, et al. Fracture energy-based optimisation of steel fibre reinforced concretes[J]. Engineering Fracture Mechanics, 2013, 107: 29-37. [12] XU S L, LI Q H, WU Y, et al. RILEM standard: testing methods for determination of the double-K criterion for crack propagation in concrete using wedge-splitting tests and three-point bending beam tests, recommendation of RILEM TC265-TDK[J]. Materials And Structures, 2021, 54(6), 1-11. [13] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6): 425-450. [14] SHI D D, CHEN X D. Flexural tensile fracture behavior of pervious concrete under static preloading[J]. Journal of Materials in Civil Engineering, 2018, 30(11): 6018011-6018015. [15] CHEN L, FANG Q, JIANG X Q, et al. Combined effects of high temperature and high strain rate on normal weight concrete[J]. International Journal of Impact Engineering, 2015, 86: 40-56. [16] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization[J]. International Journal of Impact Engineering, 2001, 25(9): 869-886. [17] CHEN C, FAN X, CHEN X. Experimental investigation of concrete fracture behavior with different loading rates based on acoustic emission[J]. Construction and Building Materials. 2020, 237(6063): 117472. [18] GURUSIDESWAR S, SHUKLA A, JONNALAGADDA K N, et al. Tensile strength and failure of ultra-high performance concrete (UHPC) composition over a wide range of strain rates[J]. Construction and Building Materials, 2020, 258: 119642. [19] ZHANG X X, ABD ELAZIM A M, RUIZ G, et al. Fracture behaviour of steel fibre-reinforced concrete at a wide range of loading rates[J]. International Journal of Impact Engineering, 2014, 71: 89-96. [20] POWERS T C, BROWNYARD T L. Studies of the physical properties of hardened Portland cement paste[J]. Journal of the American concrete institute, 1948, 18(3): 250-263. [21] 张珈碧. 高吸水树脂对混凝土断裂性能影响的研究[D]. 大连: 大连理工大学, 2018. ZHANG J B. Study on the influence of super absorbent resin on the fracture properties of concrete[D]. Dalian: Dalian University of Technology, 2018 (in Chinese). [22] 中华人民共和国国家发展和改革委员会. 水工混凝土断裂试验规程: DL/T 5332—2005[S]. 北京: 中国电力出版社, 2006. Ntional Development and Reform Commission of the People’s Republic of China. Hydraulic concrete fracture test procedure: DL/T 5332—2005[S]. Beijing: China Electric Power Publishing House, 2006 (in Chinese). [23] OHNO K, UJI K, UENO A, et al. Fracture process zone in notched concrete beam under three-point bending by acoustic emission[J]. Construction and Building Materials, 2014, 67: 139-145. [24] 莫石秀, 郭寅川, 覃 潇, 等. 混杂纤维增强内养生水泥混凝土力学、收缩及断裂性能研究[J]. 公路交通科技, 2021, 38(8): 1-8. MO S X, GUO Y C, QIN X, et al. Study on mechanical, shrinkage and fracture properties of hybrid fiber reinforced internal curing cement concrete[J]. Journal of Highway and Transportation Research and Development, 2021, 38(8): 1-8 (in Chinese). |