[1] WANG Y F, LEI L, LIU J H, et al. Accelerators for normal concrete: a critical review on hydration, microstructure and properties of cement-based materials[J]. Cement and Concrete Composites, 2022, 134: 104762. [2] SHIRAI K, HORII J, NAKAMUTA K, et al. Experimental investigation on the mechanical and interfacial properties of fiber-reinforced geopolymer layer on the tension zone of normal concrete[J]. Construction and Building Materials, 2022, 360: 129568. [3] 党钧陶, 汤小松, 肖建庄, 等. 碱激发泡沫混凝土早期稳定行为及机理研究[J/OL]. 建筑材料学报: 1-13 [2023-05-20]. http://kns.cnki.net/kcms/detail/31.1764.TU.20221230.1119.004.html. DANG J T, TANG X S, XIAO J Z, et al. Study on the early stability behavior and mechanism of alkali-activated foam concrete[J/OL]. Journal of Building Materials: 1-13 [2023-05-20]. http://kns.cnki.net/kcms/detail/31.1764.TU.20221230.1119.004.html (in Chinese). [4] 李升涛, 陈徐东, 张锦华, 等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报, 2021, 24(6): 1146-1153. LI S T, CHEN X D, ZHANG J H, et al. Failure characteristics of foam concrete with different density under uniaxial compression[J]. Journal of Building Materials, 2021, 24(6): 1146-1153 (in Chinese). [5] NAMBIAR E K K, RAMAMURTHY K. Sorption characteristics of foam concrete[J]. Cement and Concrete Research, 2007, 37(9): 1341-1347. [6] RAMAMURTHY K, NAMBIAR E K K, RANJANI G I S. A classification of studies on properties of foam concrete[J]. Cement and Concrete Composites, 2009, 31(6): 388-396. [7] 潘晓冰, 李 静. 泡沫混凝土的特性和应用及未来发展趋势[J]. 混凝土与水泥制品, 2020(6): 98-102. PAN X B, LI J. Characteristics and application of foam concrete and its future development trend[J]. China Concrete and Cement Products, 2020(6): 98-102 (in Chinese). [8] LUKPANOV R E, DYUSSEMBINOV D S, UTEPOV Y B, et al. Homogeneous pore distribution in foam concrete by two-stage foaming[J]. Magazine of Civil Engineering, 2021(103): 10313. [9] 荣 辉, 张 静, 张 颖, 等. 微生物发泡剂发泡机制及在泡沫混凝土中的应用[J]. 建筑材料学报, 2021, 24(2): 419-426. RONG H, ZHANG J, ZHANG Y, et al. Foaming mechanism of microbial foaming agent and its application in foam concrete[J]. Journal of Building Materials, 2021, 24(2): 419-426 (in Chinese). [10] JONES M R, MCCARTHY A. Preliminary views on the potential of foamed concrete as a structural material[J]. Magazine of Concrete Research, 2005, 57(1): 21-31. [11] AMRAN Y H M, ALYOUSEF R, ALABDULJABBAR H, et al. Performance properties of structural fibred-foamed concrete[J]. Results in Engineering, 2020, 5: 100092. [12] 赵文辉, 苏 谦, 李 婷, 等. 玻璃纤维增强泡沫轻质混凝土力学性能的试验研究[J]. 工业建筑, 2017, 47(9): 110-114+80. ZHAO W H, SU Q, LI T, et al. Experimental research on mechanical properties of light-weight foamed concrete with glass fiber reinforcement[J]. Industrial Construction, 2017, 47(9): 110-114+80 (in Chinese). [13] 杨博明, 刘慧萍, 傅渝峰, 等. 矿物掺合料对外墙保温材料泡沫混凝土的改性研究[J]. 西安工业大学学报, 2021, 41(1): 34-39. YANG B M, LIU H P, FU Y F, et al. Study on modification of mineral admixtures on foamed concrete as external wall insulation material[J]. Journal of Xi’an Technological University, 2021, 41(1): 34-39 (in Chinese). [14] 陈 兵, 刘 睫. 纤维增强泡沫混凝土性能试验研究[J]. 建筑材料学报, 2010, 13(3): 286-290+340. CHEN B, LIU J. Experimental research on properties of foamed concrete reinforced with polypropylene fibers[J]. Journal of Building Materials, 2010, 13(3): 286-290+340 (in Chinese). [15] 崔玉理, 贺鸿珠. 发泡剂利用率对泡沫混凝土性能影响研究[J]. 建筑材料学报, 2015, 18(1): 12-16. CUI Y L, HE H Z. Influence of utilization efficiency of foaming agent on foam concrete performances[J]. Journal of Building Materials, 2015, 18(1): 12-16 (in Chinese). [16] MUSA M, OTHUMAN MYDIN M A, ABDUL GHANI A N. Thermal properties of foamed concrete with addition of empty fruit bunch (EFB) fiber[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 8(10): 4662-4670. [17] 张学兵, 匡成钢, 方 志, 等. 钢纤维粉煤灰再生混凝土强度正交试验研究[J]. 建筑材料学报, 2014, 17(4): 677-684+694. ZHANG X B, KUANG C G, FANG Z, et al. Orthogonal experimental study on strength of steel fiber reinforced fly ash recycled concrete[J]. Journal of Building Materials, 2014, 17(4): 677-684+694 (in Chinese). [18] YU R, SPIESZ P, BROUWERS H J H. Static properties and impact resistance of a green ultra-high performance hybrid fibre reinforced concrete (UHPHFRC): experiments and modeling[J]. Construction and Building Materials, 2014, 68: 158-171. [19] WU Z M, SHI C J, HE W, et al. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete[J]. Construction and Building Materials, 2016, 103: 8-14. [20] ALWESABI E A H, BAKAR B H A, ALSHAIKH I M H, et al. An experimental study of compressive toughness of steel-polypropylene hybrid fibre-reinforced concrete[J]. Structures, 2022, 37: 379-388. [21] XU Y C, XING G H, ZHAO J H, et al. The effect of polypropylene fiber with different length and dosage on the performance of alkali-activated slag mortar[J]. Construction and Building Materials, 2021, 307: 124978. [22] 李长辉, 陈雪芳, 张献民, 等. 合成粗聚丙烯纤维与水泥砂浆界面黏结力学性能[J]. 复合材料学报, 2023, 40(4): 2427-2440. LI C H, CHEN X F, ZHANG X M, et al. Interface mechanical bonding properties between coarse synthetic polypropylene fiber and cement mortar[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2427-2440 (in Chinese). [23] KARAHAN O, ATIŞ C D. The durability properties of polypropylene fiber reinforced fly ash concrete[J]. Materials & Design, 2011, 32(2): 1044-1049. [24] ROMUALDI J P, MANDEL J A. Tensile Strength of concrete affected by unigormly distributed and closely spaced short lengths of wire reinforcement[J]. ACI Journal Proceedings, 1964, 61(6): 657-672. [25] 姜天华, 万聪聪, 颜 斌. BFRP筋与钢-PVA混杂ECC粘结性能[J]. 复合材料学报, 2023, 40(6): 3499-3512. JIANG T H, WAN C C, YAN B. Adhesion properties of BFRP reinforcement and steel-PVA hybrid ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3499-3512 (in Chinese). [26] ZHU L H, WEN T H, TIAN L. Size effects in compressive and splitting tensile strengths of polypropylene fiber recycled aggregate concrete[J]. Construction and Building Materials, 2022, 341: 127878. [27] SOUTSOS M, BOYLE A P, VINAI R, et al. Factors influencing the compressive strength of fly ash based geopolymers[J]. Construction and Building Materials, 2016, 110: 355-368. [28] GUO H, JIANG L Z, TAO J L, et al. Influence of a hybrid combination of steel and polypropylene fibers on concrete toughness[J]. Construction and Building Materials, 2021, 275: 122132. [29] UNTERWEGER C, MAYRHOFER T, PIANA F, et al. Impact of fiber length and fiber content on the mechanical properties and electrical conductivity of short carbon fiber reinforced polypropylene composites[J]. Composites Science and Technology, 2020, 188: 107998. [30] 邓明科, 成 媛, 翁世强, 等. 高温后高延性混凝土的抗压性能及微观结构[J]. 复合材料学报, 2020, 37(4): 985-996. DENG M K, CHENG Y, WENG S Q, et al. Compressive properties and micro-structure of high ductility concrete exposed to elevated temperature[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 985-996 (in Chinese). [31] 毕 骏, 张豫川, 谌文武, 等. 聚丙烯纤维对混凝土力学性能影响的研究[J]. 硅酸盐通报, 2015, 34(6): 1694-1699. BI J, ZHANG Y C, CHEN W W, et al. Effect of polypropylene fiber on concrete mechanical property[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1694-1699 (in Chinese). [32] 马一平, 刘静静, 杨晓杰, 等. 表观密度对水泥基材料塑性收缩开裂性能及强度的影响[J]. 材料导报, 2014, 28(2): 133-139. MA Y P, LIU J J, YANG X J, et al. Effect of apparent density on the plastic shrinkage cracking and strength of the cement-based materials[J]. Materials Review, 2014, 28(2): 133-139 (in Chinese). [33] CHUNG S Y, LEHMANN C, ELRAHMAN M A, et al. Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches[J]. Applied Sciences, 2017, 7(6): 550. [34] TANG L W, KRISHNAN N M A, BERJIKIAN J, et al. Effect of nanoscale phase separation on the fracture behavior of glasses: toward tough, yet transparent glasses[J]. Physical Review Materials, 2018, 2(11): 113602. [35] 曹万智, 高 潇, 代 佳, 等. 表观密度与孔结构对微孔混凝土性能的影响[J]. 混凝土与水泥制品, 2023(2): 60-64+72. CAO W Z, GAO X, DAI J, et al. Influence of apparent density and pore structure on properties of microporous concrete[J]. China Concrete and Cement Products, 2023(2): 60-64+72 (in Chinese). [36] 过镇海. 混凝土的强度和变形-试验基础和本构关系[M]. 北京: 清华大学出版社, 1997: 31-35. GUO Z H. Strength and deformation of concrete: test basis and constitutive relationship[M]. Beijing: Tsinghua University Press, 1997: 31-35 (in Chinese). |