[1] SHARMA M, BISHNOI S, MARTIRENA F, et al. Limestone calcined clay cement and concrete: a state-of-the-art review[J]. Cement and Concrete Research, 2021, 149: 106564. [2] IJAZ N, YE W M, REHMAN Z U, et al. Novel application of low carbon limestone calcined clay cement (LC3) in expansive soil stabilization: an eco-efficient approach[J]. Journal of Cleaner Production, 2022, 371: 133492. [3] SCRIVENER K L, NONAT A. Hydration of cementitious materials, present and future[J]. Cement and Concrete Research, 2011, 41(7): 651-665. [4] 欧阳高尚, 王劲松, 董 腾, 等. 三聚氰胺减水剂对碱激发超细偏高岭土基地质聚合物流动性和力学性能的影响[J]. 硅酸盐通报, 2020, 39(6): 1828-1834. OUYANG G S, WANG J S, DONG T, et al. Effect of melamine water reducer on fluidity and mechanical properties of alkali-activated ultrafine metakaolin based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1828-1834 (in Chinese). [5] 刘春原, 赵献辉, 朱 楠, 等. 粉煤灰基地质聚合物力学性能及碱渣改性机理[J]. 硅酸盐通报, 2017, 36(2): 679-685+691. LIU C Y, ZHAO X H, ZHU N, et al. Mechanical properties of fly ash-based geopolymers and modification mechanism of soda residue[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(2): 679-685+691 (in Chinese). [6] 孔德玉, 张俊芝, 倪彤元, 等. 碱激发胶凝材料及混凝土研究进展[J]. 硅酸盐学报, 2009, 37(1): 151-159. KONG D Y, ZHANG J Z, NI T Y, et al. Research progress on alkali-activated binders and concrete[J]. Journal of the Chinese Ceramic Society, 2009, 37(1): 151-159 (in Chinese). [7] 阎培渝. 碱激发胶凝材料发展瓶颈在哪里[J]. 硅酸盐学报, 2022, 50(8): 2067-2069. YAN P Y. What is the development bottleneck of alkali-activated binder[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2067-2069 (in Chinese). [8] LU C F, ZHANG Z H, SHI C J, et al. Rheology of alkali-activated materials: a review[J]. Cement and Concrete Composites, 2021, 121: 104061. [9] 庄培镇, 马玉玮, 罗甜恬, 等. 碱激发矿渣/粉煤灰净浆/砂浆力学性能研究[J]. 硅酸盐通报, 2022, 41(10): 3578-3589. ZHUANG P Z, MA Y W, LUO T T, et al. Study on mechanical properties of alkali-activated slag/fly ash paste/mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3578-3589 (in Chinese). [10] HASNAOUI A, GHORBEL E, WARDEH G. Optimization approach of granulated blast furnace slag and metakaolin based geopolymer mortars[J]. Construction and Building Materials, 2019, 198: 10-26. [11] PLANK J, SAKAI E, MIAO C W, et al. Chemical admixtures—chemistry, applications and their impact on concrete microstructure and durability[J]. Cement and Concrete Research, 2015, 78: 81-99. [12] 蒲心诚, 杨长辉, 甘昌成. 高强碱矿渣水泥与混凝土缓凝问题研究[J]. 水泥, 1992(10): 32-36. PU X C, YANG C H, GAN C C. Study on retarding problem of high alkali slag cement and concrete[J]. Cement, 1992(10): 32-36 (in Chinese). [13] 杨长辉, 蒲心诚. 论碱矿渣水泥及混凝土的缓凝问题及缓凝方法[J]. 重庆建筑大学学报, 1996, 18(3): 67-72. YANG C H, PU X C. A review of set-retarding and retarding measures of alkali-slag cement and concrete[J]. Journal of Chongqing Jianzhu University, 1996, 18(3): 67-72 (in Chinese). [14] PAILLARD C, CORDOBA M A, SANSON N, et al. The role of solvent quality and of competitive adsorption on the efficiency of superplasticizers in alkali-activated slag pastes[J]. Cement and Concrete Research, 2023, 163: 107020. [15] HABBABA A, PLANK J. Surface chemistry of ground granulated blast furnace slag in cement pore solution and its impact on the effectiveness of polycarboxylate superplasticizers[J]. Journal of the American Ceramic Society, 2012, 95(2): 768-775. [16] PLANK J, HIRSCH C. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption[J]. Cement and Concrete Research, 2007, 37(4): 537-542. [17] LUUKKONEN T, ABDOLLAHNEJAD Z, OHENOJA K, et al. Suitability of commercial superplasticizers for one-part alkali-activated blast-furnace slag mortar[J]. Journal of Sustainable Cement-Based Materials, 2019, 8(4): 244-257. [18] RAKNGAN W, WILLIAMSON T, FERRON R D, et al. Controlling workability in alkali-activated Class C fly ash[J]. Construction and Building Materials, 2018, 183: 226-233. [19] JANG J G, LEE N K, LEE H K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers[J]. Construction and Building Materials, 2014, 50: 169-176. [20] PALACIOS M, BANFILL G, PUERTAS F. Rheology and setting of alkali-activated slag pastes and mortars: effect of organic admixture[J]. ACI Materials Journal, 2008, 105(2): 140-148. [21] REFAIE M, MOHSEN A, NASR E S A R, et al. The effect of structural stability of chemical admixtures on the NaOH alkali-activated slag properties[J]. Journal of Materials in Civil Engineering, 2023, 35(1): 1-20. [22] PALACIOS M, PUERTAS F. Stability of superplasticizer and shrinkage-reducing admixtures in high basic media[J]. Materials Construction, 2004, 54(276): 65-86. [23] LUUKKONEN T, ABDOLLAHNEJAD Z, YLINIEMI J, et al. One-part alkali-activated materials: a review[J]. Cement and Concrete Research, 2018, 103: 21-34. [24] ZHANG Y E, LEI L, PLANK J, et al. Boosting the performance of low-carbon alkali activated slag with APEG PCEs: a comparison with ordinary Portland cement[J]. Journal of Sustainable Cement-Based Materials, 2023: 1-13. [25] LEI L, ZHANG Y. Preparation of isoprenol ether-based polycarboxylate superplasticizers with exceptional dispersing power in alkali-activated slag: comparison with ordinary Portland cement[J]. Composites Part B: Engineering, 2021, 223: 109077. [26] LIU G J, QIN X, WEI X H, et al. Study on the monomer reactivity ratio and performance of EPEG-AA (ethylene-glycol monovinyl polyethylene glycol-acrylic acid) copolymerization system[J]. Journal of Macromolecular Science, Part A, 2020, 57(9): 646-653. [27] LEI L, CHAN H K. Investigation into the molecular design and plasticizing effectiveness of HPEG-based polycarboxylate superplasticizers in alkali-activated slag[J]. Cement and Concrete Research, 2020, 136: 106150. [28] CONTE T, PLANK J. Impact of molecular structure and composition of polycarboxylate comb polymers on the flow properties of alkali-activated slag[J]. Cement and Concrete Research, 2019, 116: 95-101. [29] KASHANI A, PROVIS J L, XU J T, et al. Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali-activated slag paste[J]. Journal of Materials Science, 2014, 49(7): 2761-2772. [30] LI R, CHEN W C, LEI L, et al. Dispersing efficacy of tailored IPEG PCEs in AAS binders: elucidating the impact of PCE molecular weight[J]. Industrial & Engineering Chemistry Research, 2023, 62 (4), 1776-1787. [31] LI R, EISENREICH W, LEI L, et al. Low carbon alkali-activated slag binder and its interaction with polycarboxylate superplasticizer: importance of microstructural design of the PCEs[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(51): 17241-17251. [32] SU T, WANG Q, LU J M. Effect of NaOH content on the fluidizing effect of PCEs with different structures in NaOH-activated slag[J]. Cement and Concrete Research, 2023, 166: 107112. [33] PALACIOS M, PUERTAS F. Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars[J]. Cement and Concrete Research, 2005, 35(7): 1358-1367. [34] PALACIOS M, HOUST Y F, BOWEN P, et al. Adsorption of superplasticizer admixtures on alkali-activated slag pastes[J]. Cement and Concrete Research, 2009, 39(8): 670-677. [35] REN J, BAI Y, EARLE M J, et al. A preliminary study on the effect of separate addition of lignosulfonate superplasticiser and sodium silicates on the rheological behavior of alkali-activated slags[C]//The Third International Conference on Sustainable Construction Materials & Technology, 2013: 1-11. |