[1] 王晓初, 江必有, 聂晓梅. 中国废旧轮胎循环利用前景与建议[J]. 橡塑技术与装备, 2022, 48(8): 5-8. WANG X C, JIANG B Y, NIE X M. Prospects and suggestions for recycling waste tires in China[J]. China Rubber/Plastics Technology and Equipment, 2022, 48(8): 5-8 (in Chinese). [2] 姜雪丹. 富氧条件下废弃轮胎颗粒的着火、燃烧和排放特性研究[D]. 合肥: 中国科学技术大学, 2020: 3-12. JIANG X D. Study on ignition, combustion and emission characteristics of waste tire particles under oxygen-enriched conditions[D]. Hefei: University of Science and Technology of China, 2020: 3-12 (in Chinese). [3] 刘家兴, 杨荣周, 徐 颖, 等. 超高强度橡胶混凝土的力学特性及能量演化[J]. 建筑材料学报: 1-11 [2023-05-06]. https://kns.cnki.net/kcms/detail/31.1764.TU.20221115.0926.004.html. LIU J X, YANG R Z, XU Y, et al. Mechanical properties and energy evolution of ultra high strength rubber concrete[J]. Journal of Building Materials: 1-11 [2023-05-06]. https://kns.cnki.net/kcms/detail/31.1764.TU.20221115.0926.004.html (in Chinese). [4] 朱浩君, 薛 刚, 刘利强, 等. 橡胶混凝土的疲劳行为与损伤机理[J]. 武汉大学学报(工学版): 1-9 [2023-05-06]. https://kns.cnki.net/kcms/detail//42.1675.T.20230216.1625.004.html. ZHU H J, XUE G, LIU L Q, et al. Fatigue behavior and damage mechanism of rubber concrete[J]. Engineering Journal of Wuhan University: 1-9 [2023-05-06]. https://kns.cnki.net/kcms/detail//42.1675.T.20230216.1625.004.html (in Chinese). [5] 龙一飞, 潘 婵, 郭晓琴, 等. 冻融循环下橡胶混凝土动态力学特性试验研究[J]. 工业建筑, 2022, 52(4): 163-170+139. LONG Y F, PAN C, GUO X Q, et al. Experimental research on dynamic mechanical properties of rubber concrete subjected to freeze-thaw cycles[J]. Industrial Construction, 2022, 52(4): 163-170+139 (in Chinese). [6] 薛 刚, 朱浩君, 许 胜, 等. 橡胶混凝土单轴受压疲劳性能研究[J]. 工程力学, 2022, 39(11): 203-211. XUE G, ZHU H J, XU S, et al. Study on fatigue performance of rubber concrete under uniaxial compression[J]. Engineering Mechanics, 2022, 39(11): 203-211 (in Chinese). [7] 庞建勇, 张 琴, 姚韦靖, 等. 钢纤维橡胶混凝土力学性能试验[J]. 中国科技论文, 2020, 15(11): 1302-1307. PANG J Y, ZHANG Q, YAO W J, et al. Mechanical property test of steel fiber rubber concrete[J]. China Sciencepaper, 2020, 15(11): 1302-1307 (in Chinese). [8] 赵修敏, 杨海峰, 李雪良, 等. 钢纤维橡胶混凝土的静力和动冲击性能研究[J]. 工业建筑, 2021, 51(8): 173-178. ZHAO X M, YANG H F, LI X L, et al. Study on static and dynamic impact properties of steel-fiber reinforced rubber concrete[J]. Industrial Construction, 2021, 51(8): 173-178 (in Chinese). [9] LAI D D, DEMARTINO C, XIAO Y. High-strain rate tension behavior of fiber-reinforced rubberized concrete[J]. Cement and Concrete Composites, 2022, 131: 104554. [10] CHARKHTAB MOGHADDAM S, MADANDOUST R, JAMSHIDI M, et al. Mechanical properties of fly ash-based geopolymer concrete with crumb rubber and steel fiber under ambient and sulfuric acid conditions[J]. Construction and Building Materials, 2021, 281: 122571. [11] 白 春, 麻凤海, 刘书贤, 等. 塑钢纤维增强橡胶混凝土耐硫酸盐侵蚀试验[J]. 非金属矿, 2019, 42(3): 32-35. BAI C, MA F H, LIU S X, et al. The test of plastic-steel fiber reinforced rubber concrete anti-eroding sulphate[J]. Non-Metallic Mines, 2019, 42(3): 32-35 (in Chinese). [12] 吴伟波, 余 阳, 夏冬桃. 钢纤维增强橡胶粉早强混凝土的路用性能[J]. 新型建筑材料, 2018, 45(3): 36-40+43. WU W B, YU Y, XIA D T. Pavement performance of steel fiber reinforced rubber powder early strength concrete[J]. New Building Materials, 2018, 45(3): 36-40+43 (in Chinese). [13] 赵秋红, 董 硕, 朱 涵. 钢纤维-橡胶/混凝土抗剪性能试验[J]. 复合材料学报, 2020, 37(12): 3201-3213. ZHAO Q H, DONG S, ZHU H. Experimental study on shear behavior of steel fiber-rubber/concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3201-3213 (in Chinese). [14] LIU R Y, LI H, JIANG Q H, et al. Experimental investigation on flexural properties of directional steel fiber reinforced rubberized concrete[J]. Structures, 2020, 27: 1660-1669. [15] 刘家兴, 杨荣周, 徐 颖, 等. 疲劳荷载对橡胶-钢纤维混凝土变形、能量及损伤性能的影响[J]. 科学技术与工程, 2022, 22(28): 12571-12578. LIU J X, YANG R Z, XU Y, et al. Effect of fatigue load on deformation, energy and damage performance of rubber-steel fiber concrete[J]. Science Technology and Engineering, 2022, 22(28): 12571-12578 (in Chinese). [16] 张向冈, 邝肖梅, 牛海成, 等. 废橡胶改性再生混凝土材料性能研究进展[J]. 硅酸盐通报, 2017, 36(12): 4050-4059. ZHANG X G, KUANG X M, NIU H C, et al. Research progress on material properties of recycled aggregate concrete modified by waste rubber[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4050-4059 (in Chinese). [17] 白 春, 麻凤海, 刘书贤, 等. 塑钢纤维增强橡胶混凝土制备及其抗冻性分析[J]. 非金属矿, 2018, 41(2): 35-37. BAI C, MA F H, LIU S X, et al. Preparation of plastic steel fiber reinforced rubber concrete and its test analysis of frost resistance[J]. Non-Metallic Mines, 2018, 41(2): 35-37 (in Chinese). [18] NOAMAN A T, ABU BAKAR B H, AKIL H M. Experimental investigation on compression toughness of rubberized steel fibre concrete[J]. Construction and Building Materials, 2016, 115: 163-170. [19] 薛 刚, 侯 帅, 牛建刚. 塑钢纤维橡胶混凝土路用性能试验研究[J]. 建筑结构, 2019, 49(12): 98-102+108. XUE G, HOU S, NIU J G. Experimental research on pavement performance of rubber concrete incorporated with plastic-steel fiber[J]. Building Structure, 2019, 49(12): 98-102+108 (in Chinese). [20] GAO Y T, WANG B, LIU C J, et al. Experimental investigation on static compressive toughness of steel fiber rubber concrete[J]. Reviews on Advanced Materials Science, 2022, 61(1): 576-586. [21] 于俊洋. 钢纤维橡胶混凝土抗冲击性能试验研究[D]. 郑州: 郑州大学, 2021. YU J Y. Experimental study on impact resistance of steel fiber rubber concrete[D]. Zhengzhou: Zhengzhou University, 2021 (in Chinese). [22] 李健男. 橡胶颗粒预处理对橡胶混凝土性能影响研究[D]. 沈阳: 沈阳建筑大学, 2020: 34-35. LI J N. Study on the influence of rubber particle pretreatment on the properties of rubber concrete[D]. Shenyang: Shenyang Jianzhu University, 2020: 34-35 (in Chinese). [23] EISA A S, ELSHAZLI M T, NAWAR M T. Experimental investigation on the effect of using crumb rubber and steel fibers on the structural behavior of reinforced concrete beams[J]. Construction and Building Materials, 2020, 252: 119078. [24] 薛 刚, 孙立所, 万梓豪. 橡胶混凝土抗压强度及细观破坏机理[J]. 混凝土, 2022(1): 84-87+96. XUE G, SUN L S, WAN Z H. Study on compressive strength of rubber concrete cube based on meso-level[J]. Concrete, 2022(1): 84-87+96 (in Chinese). [25] HE L, CAI H D, HUANG Y, et al. Research on the properties of rubber concrete containing surface-modified rubber powders[J]. Journal of Building Engineering, 2021, 35: 101991. |