[1] LIU X H, TAN H B, MA B G, et al. Effect of the prepared barium@hydrogel capsule on chloride ion binding of Portland cement paste[J]. Composites Part B: Engineering, 2022, 247: 110314. [2] JIN Z Q, HOU D S, ZHAO T J. Electrochemical chloride extraction (ECE) based on the high performance conductive cement-based composite anode[J]. Construction and Building Materials, 2018, 173: 149-159. [3] PRADHAN B. A study on effectiveness of inorganic and organic corrosion inhibitors on rebar corrosion in concrete: a review[J]. Materials Today: Proceedings, 2022, 65: 1360-1366. [4] JAIN A, GENCTURK B, PIRBAZARI M, et al. Influence of pH on chloride binding isotherms for cement paste and its components[J]. Cement and Concrete Research, 2021, 143: 106378. [5] DHIR R K, EL-MOHR M A K, DYER T D. Chloride binding in GGBS concrete[J]. Cement and Concrete Research, 1996, 26(12): 1767-1773. [6] GUO Y Q, ZHANG T S, DU J P, et al. The chloride binding capacity and stability of gap-graded blended cement with calcined hydrotalcite and metakaolin[J]. Journal of Building Engineering, 2022, 49: 104093. [7] BABAAHMADI A, MACHNER A, KUNTHER W, et al. Chloride binding in Portland composite cements containing metakaolin and silica fume[J]. Cement and Concrete Research, 2022, 161: 106924. [8] CHANG H L, WANG X L, WANG Y F, et al. Chloride binding behavior of cement paste influenced by metakaolin dosage and chloride concentration[J]. Cement and Concrete Composites, 2023, 135: 104821. [9] YOSHIDA S, ELAKNESWARAN Y, NAWA T. Electrostatic properties of C-S-H and C-A-S-H for predicting calcium and chloride adsorption[J]. Cement and Concrete Composites, 2021, 121: 104109. [10] LIU X H, MA B G, TAN H B, et al. Chloride immobilization of cement-based material containing nano-Al2O3[J]. Construction and Building Materials. 2019, 220: 43-52. [11] GBOZEE M, ZHENG K R, HE F Q, et al. The influence of aluminum from metakaolin on chemical binding of chloride ions in hydrated cement pastes[J]. Applied Clay Science, 2018, 158: 186-194. [12] 胡 静, 吕 亮. 镁铝水滑石去除氯离子性能研究[J]. 工业水处理, 2008, 28(6): 59-61. HU J, LU L. Researches on the removal capacity of chloride ions from aqueous solution by calcined Mg-Al-CO3 LDH[J]. Industrial Water Treatment, 2008, 28(6): 59-61 (in Chinese). [13] WILLIAM W, NICOLAS G J, FABIEN G, et al. Insights on chemical and physical chloride binding in blended cement pastes[J]. Cement and Concrete Research, 2022, 156: 106747. [14] HUANG D G, NIU D T, ZHENG H, et al. Study on chloride transport performance of eco-friendly coral aggregate concrete in marine environment[J]. Construction and Building Materials, 2020, 258: 120272. [15] 徐智东, 梅军鹏, 王智鑫, 等. 纳米C-S-H对矿粉-水泥体系水化的影响[J]. 硅酸盐通报, 2022, 41(1): 13-19. XU Z D, MEI J P, WANG Z X, et al. Effect of nano C-S-H on hydration of slag powder-cement system[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 13-19 (in Chinese). [16] 毕瑞枭, 王起才, 代金鹏, 等. 研究超细矿粉对水泥基材料强度和微观结构的影响[J]. 混凝土, 2021(12): 97-101. BI R X, WANG Q C, DAI J P, et al. Effect of ground granulated blast furnace slag on the strength and microstructure of cement-based materials[J]. Concrete, 2021(12): 97-101 (in Chinese). [17] SONG B X, HU X, LIU S H, et al. Chloride binding of early CO2-cured Portland cement-fly ash-GGBS ternary pastes[J]. Cement and Concrete Composites, 2022, 134: 104793. [18] LI C B, MA B G, TAN H B, et al. Effect of triisopropanolamine on chloride binding of cement paste with ground-granulated blast furnace slag[J]. Construction and Building Materials, 2020, 256: 119494. [19] 张亚梅, 余保英. 掺超细矿粉水泥基材料早龄期水化产物及孔结构特性[J]. 东南大学学报(自然科学版), 2011, 41(4): 815-819. ZHANG Y M, YU B Y. Characteristics of hydration products and pore structure in cement-based material with ultra fine slag at early ages[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(4): 815-819 (in Chinese). [20] 勾密峰, 黄 飞, 管学茂. 矿渣对氯离子的固化作用[J]. 材料导报, 2014, 28(10): 120-122+144. GOU M F, HUANG F, GUAN X M. The binding effect of slag on the chloride ions[J]. Materials Review, 2014, 28(10): 120-122+144 (in Chinese). [21] 陈友治, 殷伟淞, 孙 涛, 等. 高掺量矿物掺合料对水泥基材料固化氯离子能力的影响[J]. 硅酸盐通报, 2016, 35(6): 1664-1668. CHEN Y Z, YIN W S, SUN T, et al. Effect of high addition of SCMs on the capacity of cement-based materials binding chloride ions[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(6): 1664-1668 (in Chinese). [22] 刘伟龙, 金祖权, 常洪雷, 等. 矿粉混凝土在海洋环境下的氯离子侵蚀研究[J]. 粉煤灰, 2013, 25(3): 14-17. LIU W L, JIN Z Q, CHANG H L, et al. Study of chloride ion corrosion of concrete with slag in marine environment[J]. Coal Ash, 2013, 25(3): 14-17 (in Chinese). [23] LOTHENBACH B, KULIK D A, MATSCHEI T, et al. Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials[J]. Cement and Concrete Research, 2019, 115: 472-506. [24] 卫蕊艳. 矿渣粉对混凝土力学性能及工作性能的影响[J]. 水泥工程, 2005(2): 35-38. WEI R Y. Influence of slag powder on mechanical properties and working performance of concrete[J]. Cement Engineering, 2005(2): 35-38 (in Chinese). |