[1] SHI X M, XIE N, FORTUNE K, et al. Durability of steel reinforced concrete in chloride environments: an overview[J]. Construction and Building Materials, 2012, 30: 125-138. [2] MARTÍN-PÉREZ B, ZIBARA H, HOOTON R D, et al. A study of the effect of chloride binding on service life predictions[J]. Cement and Concrete Research, 2000, 30(8): 1215-1223. [3] HALAMICKOVA P, DETWILER R J, BENTZ D P, et al. Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter[J]. Cement and Concrete Research, 1995, 25(4): 790-802. [4] CARÉ S. Effect of temperature on porosity and on chloride diffusion in cement pastes[J]. Construction and Building Materials, 2008, 22(7): 1560-1573. [5] LEE C L, HUANG R, LIN W T, et al. Establishment of the durability indices for cement-based composite containing supplementary cementitious materials[J]. Materials & Design, 2012, 37: 28-39. [6] JENSEN O M, HANSEN P F, COATS A M, et al. Chloride ingress in cement paste and mortar[J]. Cement and Concrete Research, 1999, 29(9): 1497-1504. [7] IPAVEC A, VUK T, GABROVEK R, et al. Chloride binding into hydrated blended cements: the influence of limestone and alkalinity[J]. Cement and Concrete Research, 2013, 48: 74-85. [8] HATANAKA A, ELAKNESWARAN Y, KURUMISAWA K, et al. The impact of tortuosity on chloride ion diffusion in slag-blended cementitious materials[J]. Journal of Advanced Concrete Technology, 2017, 15(8): 426-439. [9] TANG L P, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2): 247-253. [10] BEAUDOIN J J, RAMACHANDRAN V S, FELDMAN R F. Interaction of chloride and C-S-H[J]. Cement and Concrete Research, 1990, 20(6): 875-883. [11] SHI Z G, GEIKER M R, LOTHENBACH B, et al. Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution[J]. Cement and Concrete Composites, 2017, 78: 73-83. [12] LOTHENBACH B, SCRIVENER K, HOOTON R D. Supplementary cementitious materials[J]. Cement and Concrete Research, 2011, 41(12): 1244-1256. [13] THOMAS M D A, HOOTON R D, SCOTT A, et al. The effect of supplementary cementitious materials on chloride binding in hardened cement paste[J]. Cement and Concrete Research, 2012, 42(1): 1-7. [14] DETWILER R, TENNIS P D. The use of limestone in portland cement: a state-of-the-art review[M]. Skokie: Portland Cement Association, 1996. [15] LOTHENBACH B, LE SAOUT G, GALLUCCI E, et al. Influence of limestone on the hydration of Portland cements[J]. Cement and Concrete Research, 2008, 38(6): 848-860. [16] 史才军, 王德辉, 贾煌飞, 等. 石灰石粉在水泥基材料中的作用及对其耐久性的影响[J]. 硅酸盐学报, 2017, 45(11): 1582-1593. SHI C J, WANG D H, JIA H F, et al. Role of limestone powder and its effect on durability of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1582-1593 (in Chinese). [17] BARKER A P, CORY H P. The early hydration of limestone-filled cements[M]//Blended Cements in Construction. London: CRC Press, 1991: 107-124. [18] IPAVEC A, GABROVEK R, VUK T, et al. Carboaluminate phases formation during the hydration of calcite-containing Portland cement[J]. Journal of the American Ceramic Society, 2011, 94(4): 1238-1242. [19] 王小刚, 史才军, 何富强, 等. 氯离子结合及其对水泥基材料微观结构的影响[J]. 硅酸盐学报, 2013, 41(2): 187-198. WANG X G, SHI C J, HE F Q, et al. Chloride binding and its effects on microstructure of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 187-198 (in Chinese). [20] HORNAIN H, MARCHAND J, DUHOT V, et al. Diffusion of chloride ions in limestone filler blended cement pastes and mortars[J]. Cement and Concrete Research, 1995, 25(8): 1667-1678. [21] AGUAYO M, YANG P, VANCE K, et al. Electrically driven chloride ion transport in blended binder concretes: insights from experiments and numerical simulations[J]. Cement and Concrete Research, 2014, 66: 1-10. [22] TSIVILIS S, ASPROGERAKAS A. A study on the chloride diffusion into Portland limestone cement concrete[J]. Materials Science Forum, 2010, 636/637: 1355-1361. [23] British Standard.Methods of testing cement-part 1: Determination of strength (Swedish Standard): SS-EN 196-1: 2005[S]. British: Swedish Standards Institute, 2005. [24] ASTM International. Standard test method for acid-soluble chloride in mortar and concrete: ASTM C1152[S]. West Conshohocken, PA American Society for Testing Materials, 2004. [25] ASTM International. Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixtures by bulk diffusion: ASTM C1556-11 A[S]. West Conshohocken, PA American Society for Testing Materials, 2011. [26] DURDZIŃSKI P. Hydration of multi-component cements containing clinker, slag, calcareous fly ash and limestone[D]. Switzerland: ÉCOLE Polytechnique Fédérale DE Lausanne, 2016. [27] COLLINS R E. Flow of fluids through porous materials[M]. Tulsa, Okla: Penwell Publishing Co., 1976. [28] SAOUT G L E, FÜLLMANN T, KOCABA K L S. Quantitative study of cementitious materials by X-ray diffraction/Rietveld analysis using an external standard[C]. Proc 12th International Congress on the Chemistry of Cement, 2007. [29] LOTHENBACH B, KULIK D A, MATSCHEI T, et al. Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials[J]. Cement and Concrete Research, 2019, 115: 472-506. [30] SALMAS C E, ANDROUTSOPOULOS G P. A novel pore structure tortuosity concept based on nitrogen sorption hysteresis data[J]. Industrial & Engineering Chemistry Research, 2001, 40(2): 721-730. [31] ZENG Q, LI K F, FEN-CHONG T, et al. Analysis of pore structure, contact angle and pore entrapment of blended cement pastes from mercury porosimetry data[J]. Cement and Concrete Composites, 2012, 34(9): 1053-1060. [32] HE R, MA H Y, HAFIZ R B, et al. Determining porosity and pore network connectivity of cement-based materials by a modified non-contact electrical resistivity measurement: experiment and theory[J]. Materials & Design, 2018, 156: 82-92. [33] RAMEZANIANPOUR A A, GHIASVAND E, NICKSERESHT I, et al. Influence of various amounts of limestone powder on performance of Portland limestone cement concretes[J]. Cement and Concrete Composites, 2009, 31(10): 715-720. [34] 张少华, 卢都友, 徐江涛, 等. 白云石和石灰石微粉对水泥砂浆强度和水化产物的影响[J]. 硅酸盐学报, 2016, 44(8): 1126-1133. ZHANG S H, LU D Y, XU J T, et al. Effects of dolomite and limestone powders on strength and hydration of cement mortars[J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1126-1133 (in Chinese). [35] YUAN Q, SHI C J, DE SCHUTTER G, et al. Chloride binding of cement-based materials subjected to external chloride environment: a review[J]. Construction and Building Materials, 2009, 23(1): 1-13. [36] CHEN X D, WU S X, ZHOU J K. Influence of porosity on compressive and tensile strength of cement mortar[J]. Construction and Building Materials, 2013, 40: 869-874. [37] CHINDAPRASIRT P, RUKZON S. Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar[J]. Construction and Building Materials, 2008, 22(8): 1601-1606. [38] POWERS T C. Structure and physical properties of hardened Portland cement paste[J]. Journal of the American Ceramic Society, 1958, 41(1): 1-6. |