BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (7): 2348-2359.
• Ceramics • Previous Articles Next Articles
ALATENG Shaga, CHEN Guanhong, CHEN Xing
Received:
2021-02-09
Revised:
2021-04-04
Online:
2021-07-15
Published:
2021-08-04
[1] PETRINI M, FERRANTE M, SU B. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration[J]. Dental Materials, 2013, 29(4): 375-381. [2] BAI H, WALSH F, GLUDOVATZ B, et al. Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method[J]. Advanced Materials, 2016, 28(1): 50-56. [3] SHEN P, XI J W, FU Y J, et al. Preparation of high-strength Al-Mg-Si/Al2O3 composites with lamellar structures using freeze casting and pressureless infiltration techniques[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(5): 944-950. [4] SHAGA A, SHEN P, GUO R F, et al. Effects of oxide addition on the microstructure and mechanical properties of lamellar SiC scaffolds and Al-Si-Mg/SiC composites prepared by freeze casting and pressureless infiltration[J]. Ceramics International, 2016, 42(8): 9653-9659. [5] GUO R F, LV H C, SHEN P, et al. Lamellar-interpenetrated Al-Si-Mg/Al2O3-ZrO2 composites prepared by freeze casting and pressureless infiltration[J]. Ceramics International, 2017, 43(3): 3292-3297. [6] GUO R F, SHEN P, SUN C, et al. Processing and mechanical properties of lamellar-structured Al-7Si-5Cu/TiC composites[J]. Materials & Design, 2016, 106: 446-453. [7] WANG Y, SHEN P, GUO R F, et al. Developing high toughness and strength Al/TiC composites using ice-templating and pressure infiltration[J]. Ceramics International, 2017, 43(4): 3831-3838. [8] MORITZ T, RICHTER H J. Ice-mould freeze casting of porous ceramic components[J]. Journal of the European Ceramic Society, 2007, 27(16): 4595-4601. [9] MUNCH E, SAIZ E, TOMSIA A P, et al. Architectural control of freeze-cast ceramics through additives and templating[J]. Journal of the American Ceramic Society, 2009, 92(7): 1534-1539. [10] SOFIE S W, DOGAN F. Freeze casting of aqueous alumina slurries with glycerol[J]. Journal of the American Ceramic Society, 2001, 84(7): 1459-1464. [11] CHINO Y, DUNAND D C. Directionally freeze-cast titanium foam with aligned, elongated pores[J]. Acta Materialia, 2008, 56(1): 105-113. [12] ARAKI K, HALLORAN J W. New freeze-casting technique for ceramics with sublimable vehicles[J]. Journal of the American Ceramic Society, 2004, 87(10): 1859-1863. [13] WEN C E, MABUCHI M, YAMADA Y, et al. Processing of biocompatible porous Ti and Mg[J]. Scripta Materialia, 2001, 45(10): 1147-1153. [14] CLEMMER R. Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes[J]. Solid State Ionics, 2004, 166(3/4): 251-259. [15] CLEMMER R M C, CORBIN S F. Influence of porous composite microstructure on the processing and properties of solid oxide fuel cell anodes[J]. Solid State Ionics, 2004, 166: 251-259. [16] MILOSHEVSKY G V, JORDAN P C. Water and ion permeation in bAQP1 and GlpF channels: a kinetic Monte Carlo study[J]. Biophysical Journal, 2004, 87(6): 3690-3702. [17] SOFIE S W. Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze-tape-casting process[J]. Journal of the American Ceramic Society, 2007, 90(7): 2024-2031. [18] THURN-ALBRECHT T, SCHOTTER J, KASTLE G A, et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates[J]. Science, 2000, 290(5499): 2126-2129. [19] LAUNEY M E, RITCHIE R O. On the fracture toughness of advanced materials[J]. Advanced Materials, 2009, 21(20): 2103-2110. [20] LAUNEY M E, MUNCH E, ALSEM D H, et al. A novel biomimetic approach to the design of high-performance ceramic-metal composites[J]. J R Soc Interface, 2010, 7(46): 741-753. [21] LUZ G M, MANO J F. Biomimetic design of materials and biomaterials inspired by the structure of nacre[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1893): 1587-1605. [22] ESPINOSA H D, RIM J E, BARTHELAT F, et al. Merger of structure and material in nacre and bone-perspectives on de novo biomimetic materials[J]. Progress in Materials Science, 2009, 54(8): 1059-1100. [23] BARTHELAT F, ESPINOSA H D. An experimental investigation of deformation and fracture of nacre-mother of pearl[J]. Experimental Mechanics, 2007, 47(3): 311-324. [24] BARTHELAT F. Biomimetics for next generation materials[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365(1861): 2907-2919. [25] WEGST U G K, BAI H, SAIZ E, et al. Bioinspired structural materials[J]. Nature Materials, 2015, 14(1): 23-36. [26] BOUVILLE F, MAIRE E, MEILLE S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Materials, 2014, 13(5): 508-514. [27] LAUNEY M E, MUNCH E, ALSEM D H, et al. Designing highly toughened hybrid composites through nature-inspired hierarchical complexity[J]. Acta Materialia, 2009, 57(10): 2919-2932. [28] MUNCH E, LAUNEY M E, ALSEM D H, et al. Tough, bio-inspired hybrid materials[J]. Science (New York, N Y), 2008, 322(5907): 1516-1520. [29] LIN A Y M, CHEN P Y, MEYERS M A. The growth of nacre in the abalone shell[J]. Acta Biomaterialia, 2008, 4(1): 131-138. [30] MEYERS M A, LIN A Y M, CHEN P Y, et al. Mechanical strength of abalone nacre: role of the soft organic layer[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(1): 76-85. [31] NAGLIERI V, GLUDOVATZ B, TOMSIA A P, et al. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase[J]. Acta Materialia, 2015, 98: 141-151. [32] ZHAO H W, YUE Y H, GUO L, et al. Cloning nacre’s 3D interlocking skeleton in engineering composites to achieve exceptional mechanical properties[J]. Advanced Materials, 2016, 28(25): 5099-5105. [33] KAMAT S V, HIRTH J P, MEHRABIAN R. Mechanical properties of particulate-reinforced aluminum-matrix composites[J]. Acta Metallurgica, 1989, 37(9): 2395-2402. [34] SCHULTE K, MINOSHIMA K. Damage mechanisms under tensile and fatigue loading of continuous fibre-reinforced metal-matrix composites[J]. Composites, 1993, 24(3): 197-208. [35] OCHIAI S, OSAMURA K. Influences of matrix ductility, interfacial bonding strength, and fiber volume fraction on tensile strength of unidirectional metal matrix composite[J]. Metallurgical Transactions A, 1990, 21(3): 971-977. [36] LOTTERMOSER A. Über das Ausfrieren von Hydrosolen[J]. Berichte der deutschen chemischen Gesellschaft, 1908, 41: 3976-3979. [37] BOBERTAG O, FEIST K, FISCHER H W. Über das Ausfrieren von Hydrosolen[J]. Berichte der deutschen chemischen Gesellschaft, 1908, 41: 3675-3679. [38] MAXWELL W A, GURNICK R S, FRANCISCO A C. Preliminary investigation of the freeze-casting method for forming refractory powders[J]. NACA Research Memorandum. Lewis Flight Propulsion Laboratory, 1954. [39] FUKASAWA T, ANDO M, OHJI T, et al. Synthesis of porous ceramics with complex pore structure by freeze-dry processing[J]. Journal of the American Ceramic Society, 2001, 84(1): 230-232. [40] FUKASAWA T, DENG Z Y, ANDO M, et al. Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process[J]. Journal of Materials Science, 2001, 36(10): 2523-2527. [41] DEVILLE S. Freeze-casting of porous ceramics: a review of current achievements and issues[J]. Advanced Engineering Materials, 2008, 10(3): 155-169. [42] LI W L, LU K, WALZ J Y. Freeze casting of porous materials: review of critical factors in microstructure evolution[J]. International Materials Reviews, 2012, 57(1): 37-60. [43] GUTIÉRREZ M C, FERRER M L, DEL MONTE F. Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly[J]. Chemistry of Materials, 2008, 20(3): 634-648. [44] QIAN L, ZHANG H F. Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(2): 172-184. [45] DEVILLE S, SAIZ E, TOMSIA A P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(32): 5480-5489. [46] ARAKI K, HALLORAN J W. Porous ceramic bodies with interconnected pore channels by a novel freeze casting technique[J]. Journal of the American Ceramic Society, 2005, 88(5): 1108-1114. [47] ARAKI K, HALLORAN J W. Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene-camphor eutectic system[J]. Journal of the American Ceramic Society, 2004, 87(11): 2014-2019. [48] GUO R, WANG C G, YANG A K. Piezoelectric properties of the 1-3 type porous lead zirconate titanate ceramics[J]. Journal of the American Ceramic Society, 2011, 94(6): 1794-1799. [49] ZHANG Y, ZHOU K C, BAO Y X, et al. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics[J]. Materials Science and Engineering: C, 2013, 33(1): 340-346. [50] FU Q, RAHAMAN M N, DOGAN F, et al. Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2008, 86(2): 514-522. [51] DEVILLE S, VIAZZI C, GUIZARD C. Ice-structuring mechanism for zirconium acetate[J]. Langmuir, 2012, 28(42): 14892-14898. [52] PORTER M M, MCKITTRICK J, MEYERS M A. Biomimetic materials by freeze casting[J]. JOM, 2013, 65(6): 720-727. [53] YANG T Y, LEE J M, YOON S Y, et al. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(5): 1495-1502. [54] LEE J H, CHOI H J, YOON S Y, et al. Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique[J]. Journal of Porous Materials, 2013, 20(1): 219-226. [55] YOUNG Y T, YOUNG K W, YOUNG Y S, et al. Macroporous silicate ceramics prepared by freeze casting combined with polymer sponge method[J]. Journal of Physics and Chemistry of Solids, 2010, 71(4): 436-439. [56] HAN J C, HU L Y, ZHANG Y M, et al. Fabrication of ceramics with complex porous structures by the impregnate-freeze-casting process[J]. Journal of the American Ceramic Society, 2009, 92(9): 2165-2167. [57] ZUO K H, ZHANG Y, ZENG Y P, et al. Pore-forming agent induced microstructure evolution of freeze casted hydroxyapatite[J]. Ceramics International, 2011, 37(1): 407-410. [58] AKKOUCH A, ZHANG Z, ROUABHIA M. A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration[J]. Journal of Biomedical Materials Research Part A, 2011, 96A(4): 693-704. [59] DEVILLE S, SAIZ E, TOMSIA A P. Ice-templated porous alumina structures[J]. Acta Materialia, 2007, 55(6): 1965-1974. [60] MACCHETTA A, TURNER I G, BOWEN C R. Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method[J]. Acta Biomaterialia, 2009, 5(4): 1319-1327. [61] TANG Z, KOTOV N A, MAGONOV S, et al. Nanostructured artificial nacre[J]. Nature Materials, 2003, 2(6): 413-418. [62] LIU Q, YE F, GAO Y, et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties[J]. Journal of Alloys and Compounds, 2014, 585: 146-153. [63] KIRSCHVINK J L, GOULD J L. Biogenic magnetite as a basis for magnetic field detection in animals[J]. Biosystems, 1981, 13(3): 181-201. [64] KALMIJN A J, GONZALEZ I F, MCCLUNE M C. The physical nature of life[J]. Journal of Physiology-Paris, 2002, 96(5/6): 355-362. [65] WALCOTT C, GREEN R P. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field[J]. Science, 1974, 184(4133): 180-182. [66] GOULD J L, KIRSCHVINK J L, DEFFEYES K S. Bees have magnetic remanence[J]. Science, 1978, 201(4360): 1026-1028. [67] KIRSCHVINK J L, KOBAYASHI-KIRSCHVINK A, WOODFORD B J. Magnetite biomineralization in the human brain[J]. PNAS, 1992, 89(16): 7683-7687. [68] BLAKEMORE R. Magnetotactic bacteria[J]. Science, 1975, 190(4212): 377-379. [69] FRANK M B, NALEWAY S E, HAROUSH T, et al. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting[J]. Materials Science and Engineering: C, 2017, 77: 484-492. [70] PORTER M M, YEH M, STRAWSON J, et al. Magnetic freeze casting inspired by nature[J]. Materials Science and Engineering: A, 2012, 556: 741-750. [71] MASHKOUR M, TAJVIDI M, KIMURA T, et al. Fabricating unidirectional magnetic papers using permanent magnets to align magnetic nanoparticle covered natural cellulose fibers[J]. BioResources, 2011, 6: 4731-4738. [72] PORTER M M, NIKSIAR P, MCKITTRICK J. Microstructural control of colloidal-based ceramics by directional solidification under weak magnetic fields[J]. Journal of the American Ceramic Society, 2016, 99(6): 1917-1926. [73] DEVILLE S, MAIRE E, LASALLE A, et al. In situ X-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions—part I: initial instants[J]. Journal of the American Ceramic Society, 2009, 92(11): 2489-2496. [74] CHEN P Y, LIN A Y M, LIN Y S, et al. Structure and mechanical properties of selected biological materials[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 208-226. [75] MEYERS M A, CHEN P Y, LOPEZ M I, et al. Biological materials: a materials science approach[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(5): 626-657. [76] CHEN P Y, LIN A Y M, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia, 2008, 4(3): 587-596. [77] CHENG L, THOMAS A, GLANCEY J L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 211-220. [78] PORTER M M, MERAZ L, CALDERON A, et al. Torsional properties of helix-reinforced composites fabricated by magnetic freeze casting[J]. Composite Structures, 2015, 119: 174-184. [79] DEVILLE S. Freezing as a path to build complex composites[J]. Science, 2006, 311(5760): 515-518. [80] LEE S, PORTER M, WASKO S, et al. Potential bone replacement materials prepared by two methods[J]. MRS Online Proceedings Library, 2012, 1418(1): 177-188. |
[1] | YAO Suqin, ZHA Wenhua, LIU Xinquan, JI Shengxing, HE Changchun, YU Yue. Physicochemical and Thermal Activation Properties of Waste Coal Gangue in Pingxiang Mining Area [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2280-2287. |
[2] | FAN Xiaochun, ZHANG Wenjing, LIANG Tianfu, CHEN Kaifeng. Experimental Study on Basic Mechanical Properties of Recycled Tyre Steel Fiber Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2331-2340. |
[3] | HUANG Kailin, LI Shujin, ZANG Xuhang. Effects of Different Types of Recycled Fine Aggregate on Mechanical Properties of Thermal Insulation Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2341-2347. |
[4] | JIANG Yingjun, ZHANG Wei, LI Qilong, QIAO Huaiyu. Mechanical Properties of Cement-Improved Loess Fillerfor Intercity Railway [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2409-2417. |
[5] | ZHANG Yi, ZHU Yanmei, REN Qiang, JIANG Zhengwu. Progress on 3D Printing Construction Technology and Its Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1796-1807. |
[6] | JIN Yuan, XU Jiabin, SUN Dengtian, CHEN Mingxu, HUANG Yongbo, LU Lingchao, CHENG Xin. Effect of Nano-Silica on Structural Deformation, Rheological and Mechanical Properties of 3D Printed White Portland Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1855-1862. |
[7] | XU Jiabin, JIN Yuan, ZHAO Zhihui, CHEN Mingxu, LU Lingchao, CHENG Xin. Effect of Iron Oxide Red Pigment on Rheological Property and Printability of 3D Printed White Portland Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1863-1869. |
[8] | ZHANG Chao, DENG Zhicong, WANG Zhibin, HOU Zeyu, JIA Zijian, WANG Xianggang, JIA Lutao, CHEN Chun, SUN Zhengming, ZHANG Yamei, PAN Jinlong. Effects of Fibers on Printing Performance and Mechanical Properties of 3D Printing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1870-1878. |
[9] | CAO Qianfei, CUI Dong, SHI Xiaohan, WAN Yi, ZUO Xiaobao, LAI Jianzhong. Effect of Humidity Evolution on Microstructure and Mechanical Properties of Alternate 3D Printing Specimens [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1879-1888. |
[10] | CUI Congcong, LI Shan, LI Wei, BAO Jianxun, ZHANG Ge, WANG Gong. Sintering Characteristics of SiC Ceramics Prepared by Stereolithography 3D Printing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1937-1942. |
[11] | HE Yining, DAI Gaoshang, WU Jiamin, ZHANG Jie, PAN Mingzhu, CHEN Jingyan, CHEN Ying, WANG Yongjun, ZHANG Hongxing. Effect of Epoxy Resin Content on Properties of Porous Coal Series Kaolin Ceramics Prepared by Selective Laser Sintering [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1950-1956. |
[12] | MING Xinzhao, LIU Zhichao, WANG Fazhou, HU Shuguang, HU Chuanlin. Effect of Al2O3 Doping on Carbonation Performance of γ-C2S [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 2003-2010. |
[13] | LIU Hulin, WANG Zhao, WU Yuanting, REN Siqian, WANG Wei, HAN Guiying. Review on Characteristics of Fluidized Bed Combustion Ashes and Key Issues in Their Application as Cement Admixtures [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 2052-2061. |
[14] | CHEN Junsong, WANG Wei, QIAO Min, ZHAO Shuang, ZENG Luping. Research Progress on Influence of High Rock Temperature on Performance of Shotcrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1441-1452. |
[15] | YAN Ziwei, LIU Li, SUN Jinfeng, LU Bao, ZU Qinghe, ZANG Jun, LI Debiao, HOU Guihua. Synergistic Effect of Tricalcium Aluminate and Calcium Carbonate on Early Mechanical Strength and Setting Time of Portland Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1470-1476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||