BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (6): 2042-2051.
• Solid Waste and Eco-Materials • Previous Articles Next Articles
REN Zhisheng, LIU Shuhua
Received:
2021-01-18
Revised:
2021-03-19
Online:
2021-06-15
Published:
2021-07-08
[1] NRIAGU J O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere[J]. Nature, 1979, 279(5712): 409-411. [2] BOHN H L, MCNEAL B L, O'CONNOR G A. Soil chemistry[M]. New York: Wiley, 1979. [3] TANDY S, BOSSART K, MUELLER R, et al. Extraction of heavy metals from soils using biodegradable chelating agents[J]. Environmental Science & Technology, 2004, 38(3): 937-944. [4] LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. [5] MCLAUGHLIN M J, TILLER K G, NAIDU R, et al. Review: the behaviour and environmental impact of contaminants in fertilizers[J]. Soil Research, 1996, 34(1): 1. [6] KHALID S, SHAHID M, NIAZI N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J]. Journal of Geochemical Exploration, 2017, 182: 247-268. [7] WUANA R A, OKIEIMEN F E. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation[J]. ISRN Ecology, 2011, 2011: 1-20. [8] HE Z, SHENTU U, YANG X, et al. Heavy metal contamination of soils: sources, indicators, and assessment[J]. Journal of Environmental Indicators, 2015, 9: 17-18. [9] MARIA A. Assessment of soil pollution with heavy metals in Romania[M]//Environmental Risk Assessment of Soil Contamination. Philippines: InTech, 2014. [10] DESAULES A, AMMANN S, SCHWAB P. Advances in long-term soil-pollution monitoring of Switzerland[J]. Journal of Plant Nutrition and Soil Science, 2010, 173(4): 525-535. [11] LEE C G, CHON H T, JUNG M C. Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea[J]. Applied Geochemistry, 2001, 16(11/12): 1377-1386. [12] FRANGI J P, RICHARD D. Heavy metal soil pollution cartography in northern France[J]. Science of the Total Environment, 1997, 205(1): 71-79. [13] IKEDA A, YODA K. Soil pollution by heavy metals in Sakai city[J]. Japanese Journal of Ecology, 1982, 32(2): 241-249. [14] CHU H J, LIN Y P, CHANG T K. Spatial autocorrelation analysis of soil pollution data in central Taiwan[C]//2011 International Conference on Computational Science and Its Applications. June 20-23, 2011, Santander, Spain. IEEE, 2011: 219-222. [15] 中华人民共和国环境保护部,中华人民共和国国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014(5):10-11. Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources, PRC. National survey of soil pollution[J]. China Environmental Protection Industry, 2014(5): 10-11 (in Chinese). [16] ROBERTS D, NACHTEGAAL M, SPARKS D L. Speciation of metals in soils[M]//SSSA Book Series. Madison, WI, USA: Soil Science Society of America, 2018: 619-654. [17] DIJKSTRA E F. A micromorphological study on the development of humus profiles in heavy metal polluted and non-polluted forest soils under Scots pine[J]. Geoderma, 1998, 82(4): 341-358. [18] MCBRIDE M, SAUVE S, HENDERSHOT W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils[J]. European Journal of Soil Science, 1997, 48(2): 337-346. [19] VALINE S B, CHILCOTE D D, ZAMBRANO A R, et al. Development of a soil washing system[C]// CAB Direct, 1990. [20] Environmental Protection Agency, Washington, DC. Considerations in ground-water remediation at superfund sites and RCRA facilities: update[J]. National Digital Library of Engineering Technology, 1992. [21] CLAY D. Considerations in ground-water remediation at superfund sites and RCRA facilities: update[J]. USEPA memorandum, 1992. [22] OSMAN K T. Soil pollution[M]//Soil Degradation, Conservation and Remediation. Dordrecht: Springer Netherlands, 2013: 149-226. [23] KHAN F I, HUSAIN T, HEJAZI R. An overview and analysis of site remediation technologies[J]. Journal of Environmental Management, 2004, 71(2): 95-122. [24] HELMUT M. Soil remediation and rehabilitation: treatment of contaminated and disturbed land[M]. Dordrecht: Springer, 2012. [25] CZURDA K A. The triple multimineral barrier for hazardous waste encapsulation[J]. Engineering Geology, 1993, 34(3/4): 205-209. [26] 刘 睿,杜延军,梅丹兵,等.土-膨润土系竖向隔离工程屏障阻滞重金属污染物运移特性试验研究[J].防灾减灾工程学报,2018,38(5):815-821. LIU R, DU Y J, MEI D B, et al. Laboratory study of soil-bentonite vertical barrier on heavy metal migration retardation[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 815-821 (in Chinese). [27] 薛 强,詹良通,胡黎明,等.环境岩土工程研究进展[J].土木工程学报,2020,53(3):80-94. XUE Q, ZHAN L T, HU L M, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2020, 53(3): 80-94 (in Chinese). [28] GRIFFITHS R A. Soil-washing technology and practice[J]. Journal of Hazardous Materials, 1995, 40(2): 175-189. [29] DERMONT G, BERGERON M, MERCIER G, et al. Soil washing for metal removal: a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1): 1-31. [30] MERCIER G, DUCHESNE J, BLACKBURN D. Prediction of the efficiency of physical methods to remove metals from contaminated soils[J]. J. Environ. Eng, 2001, 127(4):348-358. [31] WILLIFORD C, MARK BRICKA R. Physical separation of metal-contaminated soils[M]//Environmental Restoration of Metals-Contaminated Soils. Boca Raton: CRC Press, 2000: 121-165. [32] SMITH L. Contaminants and remedial options at selected metal-contaminated sites. Technical resource report[R]. Battelle, Columbus, OH (United States), 1995. [33] AGENCY E P. Contaminants and remedial options at selected metal-contaminated sites[J]. EPA, 1995. [34] GUPTA C K, MUKHERJEE T K. Hydrometallurgy: an introductory appraisal[M]//Hydrometallurgy in Extraction Processes. Routledge, 2019: 1-56. [35] DUXSON P, FERNÁNDEZ-JIMÉNEZ A, PROVIS J L, et al. Geopolymer technology: the current state of the art[J]. Journal of Materials Science, 2007, 42(9): 2917-2933. [36] TAJUDIN S A, AZMI M M, NABILA A A. Stabilization/solidification remediation method for contaminated soil: a review[J]. IOP Conference Series: Materials Science and Engineering, 2016, 136: 012043. [37] 金漫彤,沈学优.土壤聚合物的制备及其固化重金属离子的研究[J].化工环保,2005,25(2):84-87. JIN M T, SHEN X Y. Preparation of geopolymer and its application in the fixation of heavy metal ions[J]. Environmental Protection of Chemical Industry, 2005, 25(2): 84-87 (in Chinese). [38] DERMATAS D, MENG X G. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 2003, 70(3/4): 377-394. [39] YIN C Y, MAHMUD H B, SHAABAN M G. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash[J]. Journal of Hazardous Materials, 2006, 137(3): 1758-1764. [40] MOON D H, WAZNE M, YOON I H, et al. Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils[J]. Journal of Hazardous Materials, 2008, 159(2/3): 512-518. [41] 殷 飞,王海娟,李燕燕,等.不同钝化剂对重金属复合污染土壤的修复效应研究[J].农业环境科学学报,2015,34(3):438-448. YIN F, WANG H J, LI Y Y, et al. Remediation of multiple heavy metal polluted soil using different immobilizing agents[J]. Journal of Agro-Environment Science, 2015, 34(3): 438-448 (in Chinese). [42] USMAN A, KUZYAKOV Y, STAHR K. Effect of clay minerals on immobilization of heavy metals and microbial activity in a sewage sludge-contaminated soil (8 pp)[J]. Journal of Soils and Sediments, 2005, 5(4): 245-252. [43] 刘永红,冯 磊,胡红青,等.磷矿粉和活化磷矿粉修复Cu污染土壤[J].农业工程学报,2013,29(11):180-186. LIU Y H, FENG L, HU H Q, et al. Evaluation of phosphate rock and activated phosphate rock for remediation of copper-contaminated soils[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(11): 180-186 (in Chinese). [44] LU K P, YANG X, GIELEN G, et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil[J]. Journal of Environmental Management, 2017, 186: 285-292. [45] REDDY K R, URBANEK A, KHODADOUST A P. Electroosmotic dewatering of dredged sediments: bench-scale investigation[J]. Journal of Environmental Management, 2006, 78(2): 200-208. [46] HUNTER R J. Zeta potential in colloid science: principles and applications[M]. America: Academic Press, 2013. [47] YEUNG A T, GU Y Y. A review on techniques to enhance electrochemical remediation of contaminated soils[J]. Journal of Hazardous Materials, 2011, 195: 11-29. [48] LOZANO J C, BLANCO RODRÍGUEZ P, VERA TOMÉ F, et al. Enhancing uranium solubilization in soils by citrate, EDTA, and EDDS chelating amendments[J]. Journal of Hazardous Materials, 2011, 198: 224-231. [49] CAO M H, HU Y, SUN Q, et al. Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution[J]. Environmental Pollution, 2013, 174: 93-99. [50] SONG Y, AMMAMI M T, BENAMAR A, et al. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment[J]. Environmental Science and Pollution Research, 2016, 23(11): 10577-10586. [51] SIVAPULLAIAH P V, NAGENDRA PRAKASH B S, SUMA B N. Electrokinetic removal of heavy metals from soil[J]. Journal of Electrochemical Science and Engineering, 2015, 5(1): 47-65. [52] VIRKUTYTE J, SILLANPÄÄ M, LATOSTENMAA P. Electrokinetic soil remediation: critical overview[J]. Science of the Total Environment, 2002, 289(1/2/3): 97-121. [53] BARAUD F, TELLIER S, ASTRUC M. Ion velocity in soil solution during electrokinetic remediation[J]. Journal of Hazardous Materials, 1997, 56(3): 315-332. [54] 严建华,马增益,彭 雯,等.沥青固化城市生活垃圾焚烧飞灰的实验研究[J].环境科学学报,2004,24(4):730-733. YAN J H, MA Z Y, PENG W, et al. Experimental study on solidification of MSW incinerator fly ash by mixing with asphalt[J]. Acta Scientiae Circumstantiae, 2004, 24(4): 730-733 (in Chinese). [55] AL-HWAITI M, IBRAHIM K A, HARRARA M. Removal of heavy metals from waste phosphogypsum materials using polyethylene glycol and polyvinyl alcohol polymers[J]. Arabian Journal of Chemistry, 2019, 12(8): 3141-3150. [56] VOSKUIL T. Handbook: vitrification technologies for treatment of hazardous and radioactive waste[J]. Washington, DC: United States Environmental Protection Agency, Office of Research and Development, 1992. [57] TANG Y, LEE P H, SHIH K. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization[J]. Environmental Science & Technology, 2013, 47(15): 8609-8615. [58] DELLISANTI F, ROSSI P L, VALDRÈ G. In-field remediation of tons of heavy metal-rich waste by Joule heating vitrification[J]. International Journal of Mineral Processing, 2009, 93(3/4): 239-245. [59] NAVARRO A, CARDELLACH E, CAÑADAS I, et al. Solar thermal vitrification of mining contaminated soils[J]. International Journal of Mineral Processing, 2013, 119: 65-74. [60] COLOMBO P, BRUSATIN G, BERNARDO E, et al. Inertization and reuse of waste materials by vitrification and fabrication of glass-based products[J]. Current Opinion in Solid State and Materials Science, 2003, 7(3): 225-239. [61] GAO J, DONG C Q, ZHAO Y, et al. Vitrification of municipal solid waste incineration fly ash with B2O3 as a fluxing agent[J]. Waste Management, 2020, 102: 932-938. [62] HU L Y, MA J L, YUE Y, et al. Fixation stability of glass matrix co-existent with crystal phases for heavy metals formed by high-temperature vitrification[J]. Environmental Science and Pollution Research, 2021, 28(11): 13660-13670. [63] SHIH K, WHITE T, LECKIE J O. Spinel formation for stabilizing simulated nickel-laden sludge with aluminum-rich ceramic precursors[J]. Environmental Science & Technology, 2006, 40(16): 5077-5083. [64] LU X W, SHIH K. Formation of lead-aluminate ceramics: reaction mechanisms in immobilizing the simulated lead sludge[J]. Chemosphere, 2015, 138: 156-163. [65] BUELT J L, FARNSWORTH R K. In situ vitrification of soils containing various metals[J]. Nuclear Technology, 1991, 96(2): 178-184. [66] SALT D E, BLAYLOCK M, KUMAR N P, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants[J]. Bio/Technology (Nature Publishing Company), 1995, 13(5): 468-474. [67] RIZWAN M, MEUNIER J D, MICHE H, et al. Effect of silicon on reducing cadmium toxicity in durum wheat (triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination[J]. Journal of Hazardous Materials, 2012, 209/210: 326-334. [68] REHMAN M Z U, RIZWAN M, GHAFOOR A, et al. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation[J]. Environmental Science and Pollution Research, 2015, 22(21): 16897-16906. [69] BLAYLOCK M J, SALT D E, DUSHENKOV S, et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents[J]. Environmental Science & Technology, 1997, 31(3): 860-865. [70] DIPU S, KUMAR A A, THANGA S G. Effect of chelating agents in phytoremediation of heavy metals[J]. Remediation Journal, 2012, 22(2): 133-146. [71] CHEN H M, ZHENG C R, TU C, et al. Chemical methods and phytoremediation of soil contaminated with heavy metals[J]. Chemosphere, 2000, 41(1/2): 229-234. [72] ANTIOCHIA R, CAMPANELLA L, GHEZZI P, et al. The use of vetiver for remediation of heavy metal soil contamination[J]. Analytical and Bioanalytical Chemistry, 2007, 388(4): 947-956. [73] GARBISU C, ALKORTA I, LLAMA M J, et al. Aerobic chromate reduction by Bacillus subtilis[J]. Biodegradation, 1998, 9(2): 133-141. [74] ISHIBASHI Y, CERVANTES C, SILVER S. Chromium reduction in Pseudomonas putida[J]. Applied and Environmental Microbiology, 1990, 56(7): 2268-2270. [75] GARBISU C, LLAMA M J, SERRA J L. Effect of heavy metals on chromate reduction by Bacillus subtilis[J]. The Journal of General and Applied Microbiology, 1997, 43(6): 369-371. [76] WANG P C, MORI T, KOMORI K, et al. Isolation and characterization of an enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions[J]. Appl Environ Microbiol, 1989, 55(7): 1665-1669. [77] GARBISU C, GONZALEZ S, YANG W H, et al. Physiological mechanisms regulating the conversion of selenite to elemental selenium by Bacillus subtilis[J]. BioFactors (Oxford, England), 1995, 5(1): 29-37. [78] JING Y D, HE Z L, YANG X E. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils[J]. Journal of Zhejiang University SCIENCE B, 2007, 8(3): 192-207. [79] WHITE C, SHAMAN A K, GADD G M. An integrated microbial process for the bioremediation of soil contaminated with toxic metals[J]. Nature Biotechnology, 1998, 16(6): 572-575. [80] DASH H R, DAS S. Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03(pPW-05)[J]. International Biodeterioration & Biodegradation, 2015, 103: 179-185. |
[1] | ZHANG Xin, LIU Fang, ZHU Jian, CHEN Zuyong. Preparation and Characterization of Composite Cementitious Material Based on Electrolytic Manganese Residue-Phosphogypsum [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(5): 1610-1619. |
[2] | SU Qing, XIE Hongbo, CHEN Zhe, MAI Junming, WU Chunli. Research on Leaching of Heavy Metals from Nickel-Iron Slag in Electric Furnace [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(4): 1312-1317. |
[3] | MA Yi;YANG Jin;HAN Feng-lan;QI Li-min. Adsorption Behavior of Heavy Metal Ions by Desulfurization Gypsum in Water [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(6): 1868-1876. |
[4] | LI Ke-ke;DUAN Zheng-yang;YUN Lu;ZHOU Yang. Research Progress on Modified Chitosan Materials in Heavy Metal Waste-water Treatment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(5): 1637-1642. |
[5] | REN Jun;ZHANG Wen-jie;ZHAO Qian-cheng;WANG Kong-quan;TAO Ling. Function and Heat Modification of Immobilization Materials Made by Attapulgite for Heavy Metals in Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(3): 781-785. |
[6] | SU Xiao-mei;LI Jian. Effects of Heavy Metal Ions on Mechanical Properties and Leaching Characteristics of Steam Curing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(2): 625-629. |
[7] | JIAN Shou-wei;YU Hou-liang;MA Bao-guo;SUN Meng-qi;WU Shi-ming;ZHI Zhen-zhen. Effect of Sintering on the Properties of Ceramsite and the Solidification of Heavy Metals [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2018, 37(1): 103-109. |
[8] | WANG Wen-bo;TIAN Guang-yan;WANG Dan-dan;ZONG Li;KANG Yu-ru;WANG Ai-qin. Hydrothermal Synthesis of Mesoporous Silicate Adsorbents from Natural Low-grade Attapulgite Clay [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(7): 2379-2386. |
[9] | . Application of Biomineralization in Environmental Protection [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(4): 1209-1215. |
[10] | DUAN Zheng-yang;LIU Shu-li;XU Xiao-jun;LI Tian-guo;XIE Dao-lei;HE Chang-hua;WANG Yao. Removal of Pb2+ from Wastewater by Modified ZSM-5 Molecular Sieve Loading Microorganism [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(2): 466-471. |
[11] | ZHAO Fan;CHEN Xiu-mei;ZHANG Wen-gang;LUO Xue-li;LI Yi-xuan;ZHU Li;LI Zhong-hong. Removal of Cd(Ⅱ) and Pb (Ⅱ) in Aqueous Solution by Amino and Carboxyl Functionalized Magnetic Microspheres [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(12): 4302-4307. |
[12] | WANG Zhe;ZHANG Si-si;HUANG Guo-he;AN Chun-jiang;CHEN Li-rong;YU Wei-jia. Heavy Metals Leaching Toxicity and Concrete Performance of Water-Quenched Blast Furnace Slag after Adsorption [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(7): 2083-2088. |
[13] | ZHANG Yuan;LIU Ze;WANG Dong-min. Research Progress of the Stabilization of Heavy Metals Using Fly Ash Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(6): 1751-1755. |
[14] | LI Bin-bin;FAN Hai-hong;MA Zeng;WU Ya-lei. Heavy Metal Solidification of Sludge during Cement Calcination Process [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(6): 1891-1896. |
[15] | JIA Yan-ping;JIANG Xiu-ping;ZHANG Ming-shuang;ZHANG Lan-he;YANG Zong-ming. Effect of Cu2+ on the ETS by Using SBR [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2016, 35(5): 1390-1395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||