BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (6): 1821-1831.
• 3D Printing Cement-Based Materials • Previous Articles Next Articles
JIAO Zekun1, WANG Dongmin1, WANG Qibao1, HUANG Tianyong2, WANG Jixiang2, LI Linkun2
Received:
2021-03-24
Revised:
2021-05-26
Online:
2021-06-15
Published:
2021-07-08
CLC Number:
JIAO Zekun, WANG Dongmin, WANG Qibao, HUANG Tianyong, WANG Jixiang, LI Linkun. Influencing Factors and Testing Methods of Printability of 3D Printing Concrete Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1821-1831.
[1] JOSEPH P. Exploratory investigation of solid freeform construction[J]. Automation in Construction, 1997, 5(5): 427-437. [2] 马国伟,王 里.水泥基材料3D打印关键技术[M].北京:中国建材工业出版社,2020. MA G W, WANG L. Key technology of 3D printing of cement-based materials[M]. Beijing: China Building Materials Industry Press, 2020 (in Chinese). [3] 李小龙,王栋民,蔺喜强,等.建筑3D打印技术及材料的研究进展[C]//第十三届高性能混凝土学术研讨会论文集.唐山,2019:50-56. LI X L, WANG D M, LIN X Q, et al. Research progress of 3D printing technology and materials for buildings[C]//Proceedings of the 13th High Performance Concrete Symposium. Tangshan, 2019: 50-56 (in Chinese). [4] WU P, WANG J, WANG X Y. A critical review of the use of 3-D printing in the construction industry[J]. Automation in Construction, 2016, 68: 21-31. [5] MECHTCHERINE V, GRAFE J, NERELLA V N, et al. 3D-printed steel reinforcement for digital concrete construction: manufacture, mechanical properties and bond behaviour[J]. Construction and Building Materials, 2018, 179: 125-137. [6] 张大旺,王栋民.3D打印混凝土材料及混凝土建筑技术进展[J].硅酸盐通报,2015,34(6):1583-1588. ZHANG D W, WANG D M. Progress of 3D print of concrete materials and concrete construction technology[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1583-1588 (in Chinese). [7] 杨钱荣,赵宗志,李 晶,等.3D打印建筑砂浆流变性与打印性能及其相关性[J].混凝土,2021(1):118-121. YANG Q R, ZHAO Z Z, LI J, et al. Rheological properties and printability of 3D printing mortar and their relationship[J]. Concrete, 2021(1): 118-121 (in Chinese). [8] LE T T, AUSTIN S A, LIM S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45(8): 1221-1232. [9] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.水泥胶砂流动度测定方法:GB/T 2419—2005[S].北京:中国标准出版社,2005. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Method for determination of fluidity of cement mortar: GB/T 2419—2005[S]. Beijing: China Standards Press, 2005 (in Chinese). [10] 程文博.打印参数对3D打印水泥基材料施工性能的影响[D].北京:北京交通大学,2020. CHENG W B. Effect of printing parameters on the construction performance of 3D printing cement-based materials[D]. Beijing: Beijing Jiaotong University, 2020 (in Chinese). [11] 张洪萍.3D打印用水泥基活性粉末混凝土制备及性能研究[D].太原:中北大学,2020. ZHANG H P. Research on preparation and performance of cement-based reactive powder concrete for 3D printing[D]. Taiyuan: North University of China, 2020 (in Chinese). [12] 夏雨欣.3D打印碱激发胶凝材料的制备及性能研究[D].重庆:重庆大学,2019. XIA Y X. The preparation and properties on alkali-activated cementitious material for 3D printing[D]. Chongqing: Chongqing University, 2019 (in Chinese). [13] 刘 东,袁文韬,兰 聪,等.水泥基3D打印材料组分对打印效果的影响[J].新型建筑材料,2020,47(6):14-18. LIU D, YUAN W T, LAN C, et al. Effect of cement based 3D printing material composition on printing effect[J]. New Building Materials, 2020, 47(6): 14-18 (in Chinese). [14] 王海龙,汪 群,孙晓燕,等.基于工作性能的3D打印PVA纤维混凝土配合比优化设计[J].混凝土,2020(11):93-95. WANG H L, WANG Q, SUN X Y, et al. Optimization design of 3D printing PVA fiber concrete mix ratio based on work performance[J]. Concrete, 2020(11): 93-95 (in Chinese). [15] TAY Y W D, QIAN Y, TAN M J. Printability region for 3D concrete printing using slump and slump flow test[J]. Composites Part B: Engineering, 2019, 174: 106968. [16] ZOU S, XIAO J Z, DING T, et al. Printability and advantages of 3D printing mortar with 100% recycled sand[J]. Construction and Building Materials, 2021, 273: 121699. [17] LI X J, ZHANG N, YUAN J B, et al. Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings[J]. Construction and Building Materials, 2020, 249: 118779. [18] MOEINI M A, HOSSEINPOOR M, YAHIA A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing[J]. Construction and Building Materials, 2020, 257: 119551. [19] ASTM Standard. Standard specification for flow table for use in tests of hydraulic cement: ASTM C230/C230M-21[S]. West Conshohocken, PA: ASTM International, 2014. [20] 林家超,吴 雄,杨 文,等.3D打印建筑材料性能影响因素与分析研究[J].新型建筑材料,2017,44(10):62-65. LIN J C, WU X, YANG W, et al. An analysis of factors influencing the building material performance on 3D printing[J]. New Building Materials, 2017, 44(10): 62-65 (in Chinese). [21] 章苏阳,蒋亚清,王 玉,等.3D打印水泥基材料的建造性研究[J].混凝土与水泥制品,2020(5):6-9. ZHANG S Y, JIANG Y Q, WANG Y, et al. Research on buildability of 3D printing cementitious materials[J]. China Concrete and Cement Products, 2020(5): 6-9 (in Chinese). [22] MA G W, LI Z J, WANG L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627. [23] 朱艳梅,张 翼,蒋正武.羟丙基甲基纤维素对3D打印砂浆性能影响研究[J/OL].建筑材料学报:1-14[2021-03-04].http://kns.cnki.net/kcms/detail/31.1764.TU.20201028.1744.028.html. ZHU Y M,ZHANG Y,JIANG Z W.Hydroxypropyl methyl cellulose on the 3D printing mortar performance impact study[J/OL].Journal of building materials:1-14[2021-03-04]. http://kns.cnki.net/kcms/detail/31.1764.TU.20201028.1744.028.html (in Chinese). [24] SOUZA M T, FERREIRA I M, GUZI DE MORAES E, et al. 3D printed concrete for large-scale buildings: an overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects[J]. Journal of Building Engineering, 2020, 32: 101833. [25] 陈 雷,王栋民,蔺喜强,等.促凝剂与缓凝剂对快硬硫铝酸盐水泥性能的影响[C]//2011年混凝土与水泥制品学术讨论会论文集.无锡,2011:161-167. CHEN L, WANG D M, LIN X Q, et al. Effect of coagulant stimulant and retarder on properties of fast hardening sulfoaluminate cement[C]//Proceedings of the 2011 Symposium on Concrete and Cement Products. Wuxi, 2011: 161-167 (in Chinese). [26] 蔺喜强,张 涛,霍 亮,等.水泥基建筑3D打印材料的制备及应用研究[J].混凝土,2016(6):141-144. LIN X Q, ZHANG T, HUO L, et al. Preparation and application of 3D printing materials in construction[J]. Concrete, 2016(6): 141-144 (in Chinese). [27] 赵 颖,刘维胜,王 欢,等.石灰石粉对3D打印水泥基材料性能的影响[J].材料导报,2020,34(s2):1217-1220. ZHAO Y, LIU W S, WANG H, et al. Influence of limestone powder on performances of 3D printing cementitious materials[J]. Materials Reports, 2020, 34(s2): 1217-1220 (in Chinese). [28] CHEN M X, LI L B, WANG J A, et al. Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite[J]. Construction and Building Materials, 2020, 234: 117391. [29] CHEN M X, GUO X Y, ZHENG Y, et al. Effect of tartaric acid on the printable, rheological and mechanical properties of 3D printing sulphoaluminate cement paste[J]. Materials, 2018, 11(12): 2417. [30] POWERS T C. The properties of fresh concrete[J]. John Wiley and Sons, 1969, 24(2): 159. [31] TAYLOR P. Integrated materials and construction practices for concrete pavement: a state-of-the-practice manual (Proj.10) [J]. Concrete Pavements, 2006, [32] NERELLA V N, NÄTHER M, IQBAL A, et al. Inline quantification of extrudability of cementitious materials for digital construction[J]. Cement and Concrete Composites, 2019, 95: 260-270. [33] PERROT A, RANGEARD D, PIERRE A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques[J]. Materials and Structures, 2016, 49(4): 1213-1220. [34] ZHANG Y, ZHANG Y S, LIU G J, et al. Fresh properties of a novel 3D printing concrete ink[J]. Construction and Building Materials, 2018, 174: 263-271. [35] WOLFS R J M, BOS F P, SALET T A M. Early age mechanical behaviour of 3D printed concrete: numerical modelling and experimental testing[J]. Cement and Concrete Research, 2018, 106: 103-116. [36] MOHAN M K, RAHUL A V, VAN TITTELBOOM K, et al. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content[J]. Cement and Concrete Research, 2021, 139: 106258. [37] 王亚坤,杨钱荣.添加剂对3D打印轻骨料混凝土流变性和可打印性的影响[J/OL].建筑材料学报:1-12[2021-03-09].http://kns.cnki.net/kcms/detail/31.1764.TU.20200628.1100.016.html. WANG Y K, YANG Q R. Effect of additives on rheological properties and printability of 3D-printed lightweight aggregate concrete[J/OL]. Journal of building materials:1-12[2021-03-09]. http://kns.cnki.net/kcms/detail/31.1764.TU.20200628.1100.016.html (in Chinese). [38] 张大旺,王栋民,朴春爱,等.钢渣掺量对3D打印地质聚合物材料新拌浆体流变性的影响[J].应用基础与工程科学学报,2018,26(3):596-604. ZHANG D W, WANG D M, PIAO C A, et al. Effect of steel slag content on the rheology of 3D printing geopolymer pastes[J]. Journal of Basic Science and Engineering, 2018, 26(3): 596-604 (in Chinese). [39] REITER L, WANGLER T, ROUSSEL N, et al. The role of early age structural build-up in digital fabrication with concrete[J]. Cement and Concrete Research, 2018, 112: 86-95. [40] 刘巧玲,杨钱荣.聚合物对3D打印建筑砂浆流变特性的影响[J].建筑材料学报,2020,23(5):1206-1211. LIU Q L, YANG Q R. Influence of polymer on rheological properties of 3D printing building mortar[J]. Journal of Building Materials, 2020, 23(5): 1206-1211 (in Chinese). [41] CHHABRA R P, RICHARDSON J F. Non-Newtonian fluid behaviour[M]//Non-Newtonian Flow and Applied Rheology. Amsterdam: Elsevier, 2008: 1-55. [42] LIPSCOMB G G, DENN M M. Flow of Bingham fluids in complex geometries[J]. Journal of Non-Newtonian Fluid Mechanics, 1984, 14: 337-346. [43] WILLIAMS D A, SAAK A W, JENNINGS H M. The influence of mixing on the rheology of fresh cement paste[J]. Cement and Concrete Research, 1999, 29(9): 1491-1496. [44] 郭晓潞,杨君奕,熊归砚.硅酸镁铝及静置时间对地聚合物流变特性影响[J/OL].建筑材料学报:1-14[2021-03-10].http://kns.cnki.net/kcms/detail/31.1764.TU.20201130.0946.002.html. GUO X L, YANG J Y, XIONG G Y. Magnesium silicate aluminium and let stand for time to polymer rheology can influence [J/OL].Journal of building materials:1-14[2021-03-10]. http://kns.cnki.net/kcms/detail/31.1764.TU.20201130.0946.002.html (in Chinese). [45] ZHANG D W, WANG D M, LIN X Q, et al. The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes[J]. Construction and Building Materials, 2018, 184: 575-580. [46] 孙振平,李祖悦,庞 敏,等.3D打印混凝土特殊性能的表征术语、涵义及影响因素[J].混凝土世界,2020(11):46-53. SUN Z P, LI Z Y, PANG M, et al. Characterization terms, meanings and influencing factors of properties of 3D printing concrete[J]. China Concrete, 2020(11): 46-53 (in Chinese). [47] WOLFS R R, SALET T T. An optimization strategy for 3D concrete printing[C]//Proceedings of the 22nd EG-IEC Workshop 2015. Eindhoven, 2015. [48] 孙晓燕,乐凯笛,王海龙,等.挤出形状/尺寸对3D打印混凝土力学性能的影响[J].建筑材料学报,2020,23(6):1313-1320. SUN X Y, LE K D, WANG H L, et al. Influence of extruded strip shape and dimension on the mechanical properties of 3D printed concrete[J]. Journal of Building Materials, 2020, 23(6): 1313-1320 (in Chinese). [49] 杨钱荣,赵宗志.3D打印建筑砂浆衔接性能测试方法:CN201410558245.6[P].2014-10-20. YANG Q R, ZHAO Z Z. Test method of joint performance of 3D printing building mortar: CN201410558245.6[P]. 2014-10-20 (in Chinese). [50] NAIR S A O, PANDA S, SANTHANAM M, et al. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders[J]. Cement and Concrete Composites, 2020, 112: 103671. [51] SUIKER A S J, WOLFS R J M, LUCAS S M, et al. Elastic buckling and plastic collapse during 3D concrete printing[J]. Cement and Concrete Research, 2020, 135: 106016. [52] PANDA B, TAN M J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing[J]. Ceramics International, 2018, 44(9): 10258-10265. [53] NGUYEN V V, PANDA B, ZHANG G M, et al. Digital design computing and modelling for 3-D concrete printing[J]. Automation in Construction, 2021, 123: 103529. [54] 刘晓瑜,杨立荣,宋 扬.3D打印建筑用水泥基材料的研究进展[J].华北理工大学学报(自然科学版),2018,40(3):46-50. LIU X Y, YANG L R, SONG Y. Research progress of 3D printing building cement-based materials[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2018, 40(3): 46-50 (in Chinese). |
[1] | JIAO Min. Influence of Graphene Oxide on Rheological Properties of Fresh Cement Paste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2159-2164. |
[2] | LI Baoyu. Rheological Properties of Graphene/Polyethylene Composite Modified Asphalt Binder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2461-2468. |
[3] | ZHANG Chao, DENG Zhicong, MA Lei, LIU Chao, CHEN Yuning, WANG Zhibin, JIA Zijian, WANG Xianggang, JIA Lutao, CHEN Chun, SUN Zhengming, ZHANG Yamei. Research Progress and Application of 3D Printing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1769-1795. |
[4] | WANG Li, LI Danli, YE Kehan, GUAN Jingyuan, FENG Duo. Quantification, Optimization and Standardization of 3D Printability of Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1814-1820. |
[5] | SUN Kaili, WU Xiangqiang, LIN Xiqiang, LI Guoyou, LI Xinjian, SUN Zhipeng. Research Progress on Concrete Materials for 3D Printing and 3D Printing Formwork Technology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1832-1843. |
[6] | JIN Yuan, XU Jiabin, SUN Dengtian, CHEN Mingxu, HUANG Yongbo, LU Lingchao, CHENG Xin. Effect of Nano-Silica on Structural Deformation, Rheological and Mechanical Properties of 3D Printed White Portland Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1855-1862. |
[7] | XU Jiabin, JIN Yuan, ZHAO Zhihui, CHEN Mingxu, LU Lingchao, CHENG Xin. Effect of Iron Oxide Red Pigment on Rheological Property and Printability of 3D Printed White Portland Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1863-1869. |
[8] | ZHANG Chao, DENG Zhicong, WANG Zhibin, HOU Zeyu, JIA Zijian, WANG Xianggang, JIA Lutao, CHEN Chun, SUN Zhengming, ZHANG Yamei, PAN Jinlong. Effects of Fibers on Printing Performance and Mechanical Properties of 3D Printing Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1870-1878. |
[9] | LIU Xiongfei, LI Qi, WANG Li, WANG Nan. Bonding Behavior of Spray-Based 3D Printing Magnesium Phosphate Cement and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1895-1904. |
[10] | XIE Xiaojie, WANG Shen. Effect of Nano-Alumina on Rheological Property, Hydration and Hardening Strength of Portland Cement Paste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1911-1917. |
[11] | HAN Zhuoqun, LI Ling, LIU Shihao, QIU Kun, WANG Shouxing, LIU Futian. Research on Rheological Properties of Stereolithography ZrO2 Ceramic Slurry [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1965-1971. |
[12] | HUANG Yanmin, MAO Yanpeng, WANG Xujiang, LI Jingwei, WANG Wenlong, MA Yidi. Preparation and Properties of α-Hemihydrate Gypsum 3D Printing Slurry Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1979-1986. |
[13] | LUO Wenjin, WANG Liying. Effect of Polymer Powder Content on Rheological Properties ofCement Paste Modified by Cellulose Ether [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(1): 71-76. |
[14] | HU Shanhai, QIAN Yupeng, JIANG Xuefeng, WANG Fei, DING Feng, ZHAO Shaolin. Research on Rheological Properties of Vermiculite Based Casting Slurry [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(1): 312-316. |
[15] | YU Jie;WANG Fang;WANG Dong-min. Microwave-assisted Synthesis of Polycarboxylic Ether Superplasticizer and Its Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2017, 36(9): 3180-3185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||