BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (3): 858-866.
• Solid Waste and Eco-Materials • Previous Articles Next Articles
PENG Yuqing, GUO Rongxin, LIN Zhiwei, ZHANG Min
Received:
2020-11-19
Revised:
2020-12-25
Online:
2021-03-15
Published:
2021-04-13
[1] 石喜军.水泥行业功能拓展环境影响评价方法研究[D].北京:北京理工大学,2014. SHI X J. The study of environmental impact assessment in cement industry function expansion[D]. Beijing: Beijing Institute of Technology, 2014 (in Chinese). [2] 刘书秀.我国水泥行业环境成本核算研究[D].南昌:华东交通大学,2016. LIU S X. China’s cement industry environmental cost analysis[D]. Nanchang: East China Jiaotong University, 2016 (in Chinese). [3] PAN Z, TAO Z, CAO Y F, et al. Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature[J]. Cement and Concrete Composites, 2018, 86: 9-18. [4] 仇秀梅,刘亚东,严春杰,等.粉煤灰基地质聚合物固化Pb2+及其高温稳定性研究[J].硅酸盐通报,2019,38(7):2281-2287+2294. QIU X M, LIU Y D, YAN C J, et al. Research on immobilization of Pb2+ using fly ash-based geopolymer and its thermostability[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2281-2287+2294 (in Chinese). [5] OHNO M, LI V C. A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites[J]. Construction and Building Materials, 2014, 57: 163-168. [6] PALOMO A, KRIVENKO P, GARCIA-LODEIRO I, et al. A review on alkaline activation: new analytical perspectives[J]. Materiales De Construcción, 2014, 64(315): e022. [7] WINNEFELD F, LEEMANN A, LUCUK M, et al. Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials[J]. Construction and Building Materials, 2010, 24(6): 1086-1093. [8] ANTONI, WIJAYA S W, HARDJITO D. Compressive strength of geopolymer based on the fly ash variation[J]. Materials Science Forum, 2016, 841: 98-103. [9] SOUTSOS M, BOYLE A P, VINAI R, et al. Factors influencing the compressive strength of fly ash based geopolymers[J]. Construction and Building Materials, 2016, 110: 355-368. [10] RICKARD W D A, WILLIAMS R, TEMUUJIN J, et al. Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications[J]. Materials Science and Engineering: A, 2011, 528(9): 3390-3397. [11] ASSI L N, EDDIE DEAVER E, ZIEHL P. Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete[J]. Construction and Building Materials, 2018, 167: 372-380. [12] GUNASEKARA C, LAW D W, SETUNGE S, et al. Zeta potential, gel formation and compressive strength of low calcium fly ash geopolymers[J]. Construction and Building Materials, 2015, 95: 592-599. [13] 王顺风,马 雪,杜 浪,等.粉煤灰粒径对地质聚合物孔结构及性能的影响[J].非金属矿,2017,40(5):5-8. WANG S F, MA X, DU L, et al. Effect of particle size of fly ash on pore structure and properties of geopolymers[J]. Non-Metallic Mines, 2017, 40(5): 5-8 (in Chinese). [14] CHINDAPRASIRT P, CHAREERAT T, HATANAKA S, et al. High-strength geopolymer using fine high-calcium fly ash[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 264-270. [15] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. [16] 郭晓潞,施惠生.粉煤灰地聚合物溶出聚合机理及其性能研究[J].非金属矿,2011,34(4):9-11+75. GUO X L, SHI H S. Dissolution and geopolymerization mechanism and performances of fly ash geopolymer[J]. Non-Metallic Mines, 2011, 34(4): 9-11+75 (in Chinese). [17] LEE B, KIM G, KIM R, et al. Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash[J]. Construction and Building Materials, 2017, 151: 512-519. [18] GUNASEKARA C, LAW D W, SETUNGE S. Effect of composition of fly ash on compressive strength of fly ash based geopolymer mortar[C]. 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), 2014. [19] CHINDAPRASIRT P, SILVA P, SAGOE-CRENTSIL K, et al. Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems[J]. Journal of Materials Science, 2012, 47(12): 4876-4883. [20] ANTONI, WIJAYA S W, HARDJITO D. Factors affecting the setting time of fly ash-based geopolymer[J]. Materials Science Forum, 2016, 841: 90-97. [21] LEE W K W, VAN DEVENTER J S J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements[J]. Cement and Concrete Research, 2002, 32(4): 577-584. [22] ALONSO S, PALOMO A. Calorimetric study of alkaline activation of calcium hydroxide-metakaolin solid mixtures[J]. Cement and Concrete Research, 2001, 31(1): 25-30. [23] KOMLJENOVIC' M, BAAREVIC' Z, BRADIC' V. Mechanical and microstructural properties of alkali-activated fly ash geopolymers[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 35-42. [24] 王亚超.碱激发粉煤灰基地质聚合物强化增韧及耐久性能研究[D].西安:西安建筑科技大学,2014. WANG Y C. Investigations on reinforcing, toughening and durability of alkali-activated fly ash-based geopolymer[D]. Xi’an: Xi’an University of Architecture and Technology, 2014 (in Chinese). [25] NEMATOLLAHI B, SANJAYAN J, SHAIKH F U A. Comparative deflection hardening behavior of short fiber reinforced geopolymer composites[J]. Construction and Building Materials, 2014, 70: 54-64. [26] VAN JAARSVELD J G S, VAN DEVENTER J S J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers[J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3932-3941. [27] NIKOLIC' I, ZEJAK R, JANKOVI-ASTVAN I, et al. Influence of alkali cation on the mechanical properties and durability of fly ash based geopolymers[J]. Acta Chimica Slovenica, 2013, 60(3): 636-643. [28] RATTANASAK U, CHINDAPRASIRT P. Influence of NaOH solution on the synthesis of fly ash geopolymer[J]. Minerals Engineering, 2009, 22(12): 1073-1078. [29] 孙庆巍,马驰伟,张旭冉.粉煤灰地聚物复合胶凝材料制备与性能研究[J].非金属矿,2017,40(1):26-29. SUN Q W, MA C W, ZHANG X R. Preparation and properties of fly ash geopolymer compound cementitious materials[J]. Non-Metallic Mines, 2017, 40(1): 26-29 (in Chinese). [30] KEARSLEY E P, KOVTUN M, SHEKHOVTSOVA J. Effect of activator dosage, water-to-binder-solids ratio, temperature and duration of elevated temperature curing on the compressive strength of alkali-activated fly ash cement pastes[J]. Journal of the South African Institution of Civil Engineers, 2019, 56(3): 44-52. [31] 黄 科,马玉玮,郭奕群,等.碱激发粉煤灰/矿渣复合体系的性能研究[J].硅酸盐通报,2015,34(10):2769-2774. HUANG K, MA Y W, GUO Y Q, et al. Properties of alkali-activated fly ash/slag composite system[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(10): 2769-2774 (in Chinese). [32] AZZAHRAN ABDULLAH S F, YUN-MING L, AL BAKRI M M, et al. Effect of alkali concentration on fly ash geopolymers[J]. IOP Conference Series: Materials Science and Engineering, 2018, 343: 012013. [33] CHITHAMBARAM S J, KUMAR S, PRASAD M M, et al. Effect of parameters on the compressive strength of fly ash based geopolymer concrete[J]. Structural Concrete, 2018, 19(4): 1202-1209. [34] PANIAS D, GIANNOPOULOU I P, PERRAKI T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301(1/2/3): 246-254. [35] MORSY M S, ALSAYED S H, AL-SALLOUM Y, et al. Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder[J]. Arabian Journal for Science and Engineering, 2014, 39(6): 4333-4339. [36] 杨立荣,王春梅,封孝信,等.粉煤灰/矿渣基地聚合物的制备及固化机理研究[J].武汉理工大学学报,2009,31(7):115-119. YANG L R, WANG C M, FENG X X, et al. Preparation and consolidation mechanism of fly ash-based geopolymer incorporating slag[J]. Journal of Wuhan University of Technology, 2009, 31(7): 115-119 (in Chinese). [37] 宋学锋,朱娟娟.粉煤灰-矿渣复合基地质聚合物力学性能的影响因素[J].西安建筑科技大学学报(自然科学版),2016,48(1):128-132. SONG X F, ZHU J J. The factors affecting the mechanical properties of fly ash and slag based geopolymer[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2016, 48(1): 128-132 (in Chinese). [38] LEONG H Y, ONG D E L, SANJAYAN J G, et al. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer[J]. Construction and Building Materials, 2016, 106: 500-511. [39] 何静涛.粉煤灰基地聚合物高强砂浆组成设计与性能研究[D].长沙:长沙理工大学,2018. HE J T. Study on composition design and performance of fly ash-based geopolymer high-strength mortar[D]. Changsha: Changsha University of Science & Technology, 2018 (in Chinese). [40] 徐 庆,李 秋,陈 伟,等.碱激发剂模数对地质聚合物透水混凝土的性能影响研究[J].硅酸盐通报,2018,37(11):3575-3580+3586. XU Q, LI Q, CHEN W, et al. Effect of modulus of alkali-activator on the properties of GGBS-based geopolymer pervious concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3575-3580+3586 (in Chinese). [41] JOSEPH B, MATHEW G. Influence of aggregate content on the behavior of fly ash based geopolymer concrete[J]. Scientia Iranica, 2012, 19(5): 1188-1194. [42] 尹 明,白洪涛,周 吕.粉煤灰地质聚合物混凝土的强度特性[J].硅酸盐通报,2014,33(10):2723-2727. YIN M, BAI H T, ZHOU L. Strength characteristic of fly ash based geopolymer concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2723-2727 (in Chinese). [43] 饶绍建,王克俭.高温短期养护对低钙粉煤灰地质聚合物性能的影响[J].材料导报,2011,25(s1):477-479. RAO S J, WANG K J. Effects of short-term curing at elevated temperature on the properties of low-calcium fly ash-based geopolymer[J]. Materials Review, 2011, 25(s1): 477-479 (in Chinese). [44] WANG J J, XIE J H, WANG C H, et al. Study on the optimum initial curing condition for fly ash and GGBS based geopolymer recycled aggregate concrete[J]. Construction and Building Materials, 2020, 247: 118540. [45] HUSEIEN G F, MIRZA J, ISMAIL M, et al. Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuel ash[J]. Construction and Building Materials, 2016, 125: 1229-1240. [46] ZHANG Y Y, XIAO R, JIANG X, et al. Effect of particle size and curing temperature on mechanical and microstructural properties of waste glass-slag-based and waste glass-fly ash-based geopolymers[J]. Journal of Cleaner Production, 2020, 273: 122970. [47] NOUSHINI A, BABAEE M, CASTEL A. Suitability of heat-cured low-calcium fly ash-based geopolymer concrete for precast applications[J]. Magazine of Concrete Research, 2016, 68(4): 163-177. [48] 谢子令,李 显.养护温度及时间对粉煤灰基地质聚合物混凝土强度发展的影响[J].混凝土,2014(6):55-58. XIE Z L, LI X. Effect of curing temperature and curing time on compressive strength of fly ash geopolymer concrete[J]. Concrete, 2014(6): 55-58 (in Chinese). [49] YE X H, XU J Y. Effects of curing conditions on properties of fly ash-based geopolymer concrete[C]//Proceedings of the 2015 International Conference on Material Science and Applications. Paris, France: Atlantis Press, 2015. [50] HASSAN A, ARIF M, SHARIQ M. Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete[J]. SN Applied Sciences, 2019, 1(12): 1-9. [51] 丁二宝,曹春娥,胡海泉,等.养护制度对粉煤灰基地质聚合物强度影响的研究[J].硅酸盐通报,2019,38(4):1115-1120+1127. DING E B, CAO C E, HU H Q, et al. Influence of curing schedules on the strength of fly ash-based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1115-1120+1127(in Chinese). [52] 范飞林,许金余,白二雷,等.纤维对地聚合物混凝土增强效应的试验研究[J].新型建筑材料,2010,37(10):77-79+82. FAN F L, XU J Y, BAI E L, et al. Experimental study on strengthening effects of fiber in geopolymeric concrete[J]. New Building Materials, 2010, 37(10): 77-79+82 (in Chinese). [53] 黄彩菊.纤维对地聚合物抗压强度的影响及机理分析[D].杭州:浙江工业大学,2011. HUANG C J. Compressive strengthes and microstructural characteristics of fiber reinforced geopolymer[D]. Hangzhou: Zhejiang University of Technology, 2011 (in Chinese). [54] 宋学锋,王 骏,王 艳.纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性[J].材料导报,2017,31(22):121-124+145. SONG X F, WANG J, WANG Y. Flexural strength and flexural toughness of fiber/hybrid fibers and slag-geopolymers composites[J]. Materials Review, 2017, 31(22): 121-124+145 (in Chinese). [55] XU F, DENG X, PENG C, et al. Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites[J]. Construction and Building Materials, 2017, 150: 179-189. [56] AL-MASHHADANI M M, CANPOLAT O, AYGÖRMEZ Y, et al. Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites[J]. Construction and Building Materials, 2018, 167: 505-513. [57] RANJBAR N, MEHRALI M, MEHRALI M, et al. High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber[J]. Construction and Building Materials, 2016, 112: 629-638. [58] GUO X L, PAN X J. Mechanical properties and mechanisms of fiber reinforced fly ash-steel slag based geopolymer mortar[J]. Construction and Building Materials, 2018, 179: 633-641. [59] NOUSHINI A, HASTINGS M, CASTEL A, et al. Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete[J]. Construction and Building Materials, 2018, 186: 454-475. [60] ZHANG Z H, YAO X, ZHU H J, et al. Preparation and mechanical properties of polypropylene fiber reinforced calcined Kaolin-fly ash based geopolymer[J]. Journal of Central South University of Technology, 2009, 16(1): 49-52. [61] PAYAKANITI P, PINITSOONTHORN S, THONGBAI P, et al. Effects of carbon fiber on mechanical and electrical properties of fly ash geopolymer composite[J]. Materials Today: Proceedings, 2018, 5(6): 14017-14025. |
[1] | ZHANG Jixu, WANG Wenguang, LI Jinquan, HAN Jie. Research Progress of Carbon Nanotubes Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 714-722. |
[2] | WU Yichen, GUO Rongxin, XIA Haiting, SUO Yuxia, WEI Lihuang, CHEN Jiamin. Effects of Different Dispersants on Mechanical and Electrical Properties of GO/CNFs Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 731-740. |
[3] | WANG Xuhao, GAN Long, YU Haiyang, LI Cheng, GAO Xinmin, ZHANG Yagang, LI Lianwei, BIAN Qinghua. Effect of Stone Powder Content on Properties of C45 Tuff Manufactured Sand Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 775-783. |
[4] | LAN Bo, HE Zhihai, HU Haibo, WOLDERUFAEL Yirgalemfissiha, YANG Ying, HAN Xudong. Mechanical Properties of UHPC with Zeolite Powder Replacing Part Silica Fume [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 792-800. |
[5] | XU Cundong, HUANG Song, LI Hongfei, LI Zhen, LIAN Haidong, LI Zhirui. Damage of Mechanical Properties of Basalt Fiber Reinforced Concrete under Salt Freezing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 812-820. |
[6] | XUE Wen, WANG Teng, CHENG Wenjie, SHEN Hongru, LI Yi, CHEN Jiangying, ZHU Yaohong. Influence of Low Temperature Freeze-Thaw Cycle on Dynamic Mechanical Properties of Ceramsite Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 821-828. |
[7] | ZHAO Xianhui, WANG Haoyu, ZHOU Boyu, GAO Han. Research Development on Influencing Factors of Performances and Gel Products in Fly Ash-Based Geopolymer Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 867-876. |
[8] | HU Zhenwen, GUO Yuanxin, LIN Xiangling, LI Qiuyi, ZHENG Shidong. Experimental Research on Decarbonization of High-CarbonFly Ash by Flotation [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 907-913. |
[9] | WANG Fei, LIU Ze, HAN Le, XIE Fuzhu. Preparation and Properties of Activated Coal Gangue Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 914-920. |
[10] | LIU Yang, WU Jinxiu, FENG Chunfu, YANG Shengwei, FENG Fushan, WANG Mitang. Preparation and Performance Characterization of Magnesium-Rich Nickel Slag-Fly Ash-Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 921-928. |
[11] | LI Xiaoguang, HOU Xinxin, LIANG Baozhen, WANG Panqi, ALI Saddam. Preparation and Performance Analysis of Iron Tailings Ceramsite Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 929-935. |
[12] | XIE Zixi, LIU Guibin, ZHANG Tianyu, LI Qiuyi, WANG Liang. Influence of Potassium-Based Alkaline Electrolyzed Water on Performance of Fly Ash Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 943-950. |
[13] | WANG Yanfeng, LIU Songhui, HAN Kang, ZHANG Li, GUAN Xuemao. Effect of Superfine CaCO3 on Properties of Sulphoaluminate Cement-Based Double Fluid Grouting Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(2): 368-376. |
[14] | ZHOU Jianwei, YU Baoying, KONG Yaning, YANG Wen, CHENG Baojun. Effect of Heat Treatment on Physical and Mechanical Properties of Polymer Modified Fiber Reinforced Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(2): 392-400. |
[15] | YANG Chenglin, XU Ying, HONG Jian, KONG Xinli. Research Progress on Application of Sea Sand Concrete under Strong Dynamic Load [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(2): 415-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||