[1] 王 康,吴佰建,李兆霞.损伤跨尺度演化导致的混凝土强度尺寸效应[J].东南大学学报(自然科学版),2014,44(6):1230-1234. WANG K, WU B J, LI Z X. Size effect on concrete strength caused by trans-scale damage evolution[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(6): 1230-1234 (in Chinese). [2] 宁超列,余 波.钢筋混凝土框架结构的多尺度变异性分析[J].建筑结构学报,2015,36(10):105-113. NING C L, YU B. Multi-scale variability analysis of reinforced concrete frame structures[J]. Journal of Building Structures, 2015, 36(10): 105-113 (in Chinese). [3] 程小卫,李 易,陆新征,等.基于多尺度模型的RC框架撞击倒塌响应数值分析[J].振动与冲击,2016,35(5):82-88+114. CHENG X W, LI Y, LU X Z, et al. Numerical analysis for collapse reponse of a RC frame subjected to impact loading based on multi-scale model[J]. Journal of Vibration and Shock, 2016, 35(5): 82-88+114 (in Chinese). [4] 马鲁岳.基于结构多尺度模拟的大跨斜拉桥状态评定[D].大连:大连海事大学,2018. MA L Y. Condition assessment of long-span cable-stayed bridges based on multi-scale finite element modeling[D]. Dalian: Dalian Maritime University, 2018 (in Chinese). [5] 金 浏.细观混凝土分析模型与方法研究[D].北京:北京工业大学,2014. JIN L. Study on meso-scopic model and analysis method of concrete[D]. Beijing: Beijing University of Technology, 2014 (in Chinese). [6] 金 浏,余文轩,杜修力,等.低应变率下混凝土动态拉伸破坏尺寸效应细观模拟[J].工程力学,2019,36(8):59-69+78. JIN L, YU W X, DU X L, et al. Meso-scale simulation of size effect of dynamic tensile strength of concrete under low strain rates[J]. Engineering Mechanics, 2019, 36(8): 59-69+78 (in Chinese). [7] 金 浏,苏 晓,徐海滨,等.基于细观模型的含腹筋混凝土梁受剪承载力尺寸效应[J].土木与环境工程学报(中英文),2019,41(1):80-88. JIN L, SU X, XU H B, et al. Meso-scle simulation of size effect in shear capacity of reinforced concrete beams with web reinforcement[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 80-88 (in Chinese). [8] 张 帅,金 浏,李 冬,等.结构尺寸对钢筋混凝土短柱抗震性能影响:细观分析[J].工程力学,2018,35(12):164-174. ZHANG S, JIN L, LI D, et al. Effect of structural size on seismic performance of reinforced concrete short columns—a meso-scale study[J]. Engineering Mechanics, 2018, 35(12): 164-174 (in Chinese). [9] ESCODA J, WILLOT F, JEULIN D, et al. Influence of the multiscale distribution of particles on elastic properties of concrete[J]. International Journal of Engineering Science, 2016, 98: 60-71. [10] 许文祥,陈惠苏.多尺度椭圆形集料尺寸分布对混凝土边界效应的影响[J].东南大学学报(自然科学版),2011,41(5):1048-1053. XU W X, CHEN H S. Influence of size distribution of multiscale elliptical aggregates on wall effect of concrete[J]. Journal of Southeast University (Natural Science Edition), 2011, 41(5): 1048-1053 (in Chinese). [11] 王飞阳,黄宏伟,张东明,等.带裂缝服役混凝土结构力学性能的多尺度模拟方法[J].建筑结构学报,2019,40(12):155-162. WANG F Y, HUANG H W, ZHANG D M, et al. Multi scale simulation method of mechanical behaviors of existing concrete structure with crack[J]. Journal of Building Structures, 2019, 40(12): 155-162 (in Chinese). [12] BIN S, LI Z X. Multi-scale modeling and trans-level simulation from material meso-damage to structural failure of reinforced concrete frame structures under seismic loading[J]. Journal of Computational Science, 2016, 12: 38-50. [13] HUANG Y J, YAN D M, YANG Z J, et al. 2D and 3D homogenization and fracture analysis of concrete based on in situ X-ray computed tomography images and Monte Carlo simulations[J]. Engineering Fracture Mechanics, 2016, 163: 37-54. [14] 潘子超,阮 欣,陈艾荣.基于任意级配的二维随机骨料生成方法[J].同济大学学报(自然科学版),2013,41(5):759-764. PAN Z C, RUAN X, CHEN A R. Simulation method of random aggregate in two dimension based on arbitrary gradation[J]. Journal of Tongji University (Natural Science), 2013, 41(5): 759-764 (in Chinese). [15] 胡大琳,张立兴,陈定市.二维细观随机混凝土模型的建立和应用[J].长安大学学报(自然科学版),2017,37(3):53-63. HU D L, ZHANG L X, CHEN D S. Establishment and application of 2D mesoscopic stochastic concrete model[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(3): 53-63 (in Chinese). [16] HASSANI B, HINTON E. A review of homogenization and topology optimization I—homogenization theory for media with periodic structure[J]. Computers & Structures, 1998, 69(6): 707-717. [17] HASSANI B, HINTON E. A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations[J]. Computers & Structures, 1998, 69(6): 719-738. [18] HASSANI B, HINTON E. A review of homogenization and topology optimization III—topology optimization using optimality criteria[J]. Computers & Structures, 1998, 69(6): 739-756. [19] 陈玉丽,马 勇,潘 飞,等.多尺度复合材料力学研究进展[J].固体力学学报,2018,39(1):1-68. CHEN Y L, MA Y, PAN F, et al. Research progress in multi-scale mechanics of composite materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1-68 (in Chinese). [20] 唐欣薇,张楚汉.基于均匀化理论的混凝土宏细观力学特性研究[J].计算力学学报,2009,26(6):876-881. TANG X W, ZHANG C H. Study on concrete in macro-and meso-scale mechanical properties based on homogenization theory[J]. Chinese Journal of Computational Mechanics, 2009, 26(6): 876-881 (in Chinese). [21] 丁发兴,余志武.混凝土受拉力学性能统一计算方法[J].华中科技大学学报(城市科学版),2004,21(3):29-34. DING F X, YU Z W. Unified calculation method of mechanical properties of concrete in tension[J]. Journal of Wuhan Urban Construction Institute, 2004, 21(3): 29-34 (in Chinese). [22] 余志武,丁发兴.混凝土受压力学性能统一计算方法[J].建筑结构学报,2003,24(4):41-46. YU Z W, DING F X. Unified calculation method of compressive mechanical properties of concrete[J]. Journal of Building Structures, 2003, 24(4): 41-46 (in Chinese). [23] 张 劲,王庆扬,胡守营,等.ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构,2008,38(8):127-130. ZHANG J, WANG Q Y, HU S Y, et al. Parameters verification of concrete damaged plastic model of ABAQUS[J]. Building Structure, 2008, 38(8): 127-130 (in Chinese). [24] SIDOROFF F. Description of anisotropic damage application to elasticity[C]. Physical Non-Linearities in Structural Analysis, IUTAM Colloquium, 1981. [25] 马怀发,陈厚群,黎保琨.混凝土试件细观结构的数值模拟[J].水利学报,2004,35(10):27-35. MA H F, CHEN H Q, LI B K. Meso-structure numerical simulation of concrete specimens[J]. Journal of Hydraulic Engineering, 2004, 35(10): 27-35 (in Chinese). |