BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (3): 714-722.
• ement and Concrete • Previous Articles Next Articles
ZHANG Jixu1, WANG Wenguang2,3, LI Jinquan2, HAN Jie1
Received:
2020-10-26
Revised:
2020-11-25
Online:
2021-03-15
Published:
2021-04-13
[1] 权开玉.碳纳米管/环氧树脂复合材料性能研究[J].橡塑技术与装备,2019,45(2):36-42. QUAN K Y. Study on properties of carbon nanotubes/epoxy resin composites[J]. China Rubber/Plastics Technology and Equipment, 2019, 45(2): 36-42 (in Chinese). [2] 张中太,林元华,唐子龙,等.纳米材料及其技术的应用前景[J].材料工程,2000,28(3):42-48. ZHANG Z T, LIN Y H, TANG Z L, et al. Nanometer materials & nanotechology and their application prospect[J]. Journal of Materials Engineering, 2000, 28(3): 42-48 (in Chinese). [3] EKREM M, ŞAHIN Ö S, KARABULUT S E, et al. Thermal stability and adhesive strength of boron nitride nano platelets and carbon nano tube modified adhesives[J]. Journal of Composite Materials, 2018, 52(11): 1557-1565. [4] 季 韬,黄与舟,郑作樵.纳米混凝土物理力学性能研究初探[J].混凝土,2003(3):13-14+48. JI T, HUANG Y Z, ZHENG Z Q. Primary investigation of physics and mechanics properties of nano-concrete[J]. Concrete, 2003(3): 13-14+48 (in Chinese). [5] 龚建清,林 立.氧化石墨烯/碳纳米管水泥基复合材料的抗冻性研究[J].硅酸盐通报,2018,37(11):3410-3415. GONG J Q, LIN L. Study on frost resistance of GO/CNTs cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3410-3415 (in Chinese). [6] CWIRZEN A, HABERMEHL-CWIRZEN K, PENTTALA V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites[J]. Advances in Cement Research, 2008, 20(2): 65-73. [7] PEIGNEY A, LAURENT C, FLAHAUT E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon, 2001, 39(4): 507-514. [8] AHMADI M, RESHADINEZHAD M R. A new high speed 2n-1 modular adder based on carbon nano tube field effect transistors[J]. Journal of Nanoelectronics and Optoelectronics, 2018, 13(4): 602-609. [9] SANCHEZ F, SOBOLEV K. Nanotechnology in concrete: a review[J]. Construction and Building Materials, 2010, 24(11): 2060-2071. [10] BALAGURU P, CHONG K. Nanotechnology and concrete: research opportunities[J]. ACI Special Publication, 2008, 254: 15-28. [11] LIN Z R, XU Y Y, ZHANG T. A theoretical exploration into durability of carbon nanotubes cement-based materials[C]//Electronics, Electrical Engineering and Information Science. Guangzhou: World Scientific, 2016. [12] BIRICIK H, AKÖZ F, BERKTAY I L, et al. Study of pozzolanic properties of wheat straw ash[J]. Cement and Concrete Research, 1999, 29(5): 637-643. [13] GHICOV A, SCHMUKI P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures[J]. Chemical Communications, 2009(20): 2791. [14] MOKHTAR M M, ABO-EL-ENEIN S A, HASSAAN M Y, et al. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement[J]. Construction and Building Materials, 2017, 138: 333-339. [15] WANG B M, HAN Y, PAN B F, et al. Mechanical and morphological properties of highly dispersed carbon nanotubes reinforced cement based materials[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2013, 28(1): 82-87. [16] LI G Y, WANG P M, ZHAO X H. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes[J]. Carbon, 2005, 43(6): 1239-1245. [17] SIKORA P, ABD ELRAHMAN M, CHUNG S Y, et al. Mechanical and microstructural properties of cement pastes containing carbon nanotubes and carbon nanotube-silica core-shell structures, exposed to elevated temperature[J]. Cement and Concrete Composites, 2019, 95: 193-204. [18] LI Z H, WANG H F, HE S, et al. Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite[J]. Materials Letters, 2006, 60(3): 356-359. [19] HAN Z D, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review[J]. Progress in Polymer Science, 2011, 36(7): 914-944. [20] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58. [21] SÁEZ DE IBARRA Y, GAITERO J J, ERKIZIA E, et al. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions[J]. Physica Status Solidi (a), 2006, 203(6): 1076-1081. [22] SANDLER J, SHAFFER M S P, PRASSE T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J]. Polymer, 1999, 40(21): 5967-5971. [23] GONG X Y, LIU J, BASKARAN S, et al. Surfactant-assisted processing of carbon nanotube/polymer composites[J]. Chemistry of Materials, 2000, 12(4): 1049-1052. [24] SEEGER T, KÖHLER T, FRAUENHEIM T, et al. Nanotube composites: novel SiO2 coated carbon nanotubes[J]. Chemical Communications (Cambridge, England), 2002(1): 34-35. [25] 张树鹏,宋海欧.氧化石墨烯/β-环糊精超分子杂化体的制备及表征[J].无机材料学报,2012,27(6):596-602. ZHANG S P, SONG H O. Preparation and characterization of graphene oxide/β-cyclodextrin supramolecular hybrid material[J]. Journal of Inorganic Materials, 2012, 27(6): 596-602 (in Chinese). [26] BENABDELLAH A, BELARBI H, ILIKTI H, et al. Magnetic properties of polyaniline/ZFe2O4 nanocomposites synthesized in CTAB as surfactant and ionic liquid[J]. Tenside Surfactants Detergents, 2015, 52(6): 484-492. [27] XU S L, LIU J T, LI Q H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste[J]. Construction and Building Materials, 2015, 76: 16-23. [28] XU S L, GAO L L, JIN W J. Production and mechanical properties of aligned multi-walled carbon nanotubes-M140 composites[J]. Science in China Series E: Technological Sciences, 2009, 52(7): 2119-2127. [29] HAMZAOUI R, BENNABI A, GUESSASMA S, et al. Optimal carbon nanotubes concentration incorporated in mortar and concrete[J]. Advanced Materials Research, 2012, 587: 107-110. [30] MORSY M S, ALSAYED S H, AQEL M. Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar[J]. Construction and Building Materials, 2011, 25(1): 145-149. [31] CHAIPANICH A, NOCHAIYA T, WONGKEO W, et al. Compressive strength and microstructure of carbon nanotubes-fly ash cement composites[J]. Materials Science and Engineering: A, 2010, 527(4/5): 1063-1067. [32] GILLANI S S U H, KHITAB A, AHMAD S, et al. Improving the mechanical performance of cement composites by carbon nanotubes addition[J]. Procedia Structural Integrity, 2017, 3: 11-17. [33] MAKAR J M, CHAN G W. Growth of cement hydration products on single-walled carbon nanotubes[J]. Journal of the American Ceramic Society, 2009, 92(6): 1303-1310. [34] KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research, 2010, 40(7): 1052-1059. [35] METAXA Z S, KONSTA-GDOUTOS M S, SHAH S P. Carbon nanotubes reinforced concrete[J]. ACI Special Publication, 2009, 267: 11-20. [36] PARVEEN S, RANA S, FANGUEIRO R, et al. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique[J]. Cement and Concrete Research, 2015, 73: 215-227. [37] 崔宏志,杨嘉明,林炅增.碳纳米管分散技术及碳纳米管-水泥基复合材料研究进展[J].材料导报,2016,30(3):91-95. CUI H Z, YANG J M, LIN J Z. Research progress on carbon nanotubes dispersion techniques and CNTs-reinforced cement-based materials[J]. Materials Review, 2016, 30(3): 91-95 (in Chinese). [38] 范 杰,熊光晶,李庚英.碳纳米管水泥基复合材料的研究进展及其发展趋势[J].材料导报,2014,28(11):142-148. FAN J, XIONG G J, LI G Y. Progress in research and development of carbon nanotubes-reinforced cementbased composite materials[J]. Materials Review, 2014, 28(11): 142-148 (in Chinese). [39] 王宝民,韩 瑜,宋 凯.碳纳米管水泥基材料耐久性理论探讨[J].低温建筑技术,2011,33(11):1-3. WANG B M, HAN Y, SONG K. A theoretical exploration into durability of carbon nanotubes cement-based materials[J]. Low Temperature Architecture Technology, 2011, 33(11): 1-3 (in Chinese). [40] KONG J, CASSELL A M, DAI H J. Chemical vapor deposition of methane for single-walled carbon nanotubes[J]. Chemical Physics Letters, 1998, 292(4/5/6): 567-574. [41] WANG B M, HAN Y, LIU S. Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-based composites[J]. Construction and Building Materials, 2013, 46: 8-12. [42] KANG S T, SEO J Y, PARK S H. The characteristics of CNT/cement composites with acid-treated MWCNTs[J]. Advances in Materials Science and Engineering, 2015, 2015: 1-9. [43] NOCHAIYA T, CHAIPANICH A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials[J]. Applied Surface Science, 2011, 257(6): 1941-1945. [44] LI W W, JI W M, WANG Y C, et al. Investigation on the mechanical properties of a cement-based material containing carbon nanotube under drying and freeze-thaw conditions[J]. Materials (Basel, Switzerland), 2015, 8(12): 8780-8792. [45] AMIN M S, EL-GAMAL S M A, HASHEM F S. Fire resistance and mechanical properties of carbon nanotubes-clay bricks wastes (Homra) composites cement[J]. Construction and Building Materials, 2015, 98: 237-249. [46] DEL CARMEN CAMACHO M, GALAO O, BAEZA F J, et al. Mechanical properties and durability of CNT cement composites[J]. Materials (Basel), 2014, 7(3): 1640-1651. [47] HU Y, LUO D N, LI P H, et al. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes[J]. Construction and Building Materials, 2014, 70: 332-338. [48] MATZUI L Y, OVSIENKO I V, LEN T A, et al. Transport properties of composites with carbon nanotube-based composites[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2005, 13(s1): 259-265. [49] YAZDANI N, MOHANAM V. Carbon nano-tube and nano-fiber in cement mortar: effect of dosage rate and water-cement ratio[J]. International Journal of Material Sciences, 2014, 4(2): 45. [50] SINGH A P, GUPTA B K, MISHRA M, et al. Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties[J]. Carbon, 2013, 56: 86-96. [51] HAN B G, YU X, OU J P. Effect of water content on the piezoresistivity of MWNT/cement composites[J]. Journal of Materials Science, 2010, 45(14): 3714-3719. [52] LUO J L, DUAN Z D, LI H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites[J]. Physica Status Solidi (a), 2009, 206(12): 2783-2790. [53] AZHARI F, BANTHIA N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing[J]. Cement and Concrete Composites, 2012, 34(7): 866-873. [54] KIM H K, PARK I S, LEE H K. Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water-binder ratio[J]. Composite Structures, 2014, 116: 713-719. [55] D’ALESSANDRO A, UBERTINI F, MATERAZZI A L, et al. Electromechanical modelling of a new class of nanocomposite cement-based sensors for structural health monitoring[J]. Structural Health Monitoring: an International Journal, 2015, 14(2): 137-147. [56] RAI S, TIWARI S. Nano silica in cement hydration[J]. Materials Today: Proceedings, 2018, 5(3): 9196-9202. [57] STYNOSKI P, MONDAL P, MARSH C. Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar[J]. Cement and Concrete Composites, 2015, 55: 232-240. [58] KIM H K, NAM I W, LEE H K. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume[J]. Composite Structures, 2014, 107: 60-69. [59] HUNASHYAL A. Experimental investigation on the effect of multiwalled carbon nanotubes and nano-SiO2 addition on mechanical properties of hardened cement paste[J]. Advances in Materials, 2014, 3(5): 45. [60] JAVED H, ISLAM M, MAHMOOD N, et al. Catalytic growth of multi-walled carbon nanotubes using NiFe2O4 nanoparticles and incorporation into epoxy matrix for enhanced mechanical properties[J]. Journal of Polymer Engineering, 2016, 36(1): 53-64. [61] GURUMURTHY G, HALLAD S, HUNASHYAL A M, et al. Effect of multiwalled carbon nanotubes and nano aluminium oxide on flexural and compressive strength of cement composites[J]. International Journal of Advance Research In Science And Engineering, 2014, 3(8): 215-223. |
[1] | LIANG Jiafeng, GUO Jianqiang, LI Yue, ZHU Qiaosi, LI Jiongli, WANG Xudong. Review on Mechanism of Graphene in Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 704-713. |
[2] | WU Yichen, GUO Rongxin, XIA Haiting, SUO Yuxia, WEI Lihuang, CHEN Jiamin. Effects of Different Dispersants on Mechanical and Electrical Properties of GO/CNFs Cement-Based Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 731-740. |
[3] | WEI Da, ZHU Pinghua, WANG Xinjie, LIU Hui, LIU Shaofeng, JIA Xuejun. Effect of Attached Mortar Content of Recycled Coarse Aggregate on Frost Resistance Durability of Recycled Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 765-774. |
[4] | WANG Xuhao, GAN Long, YU Haiyang, LI Cheng, GAO Xinmin, ZHANG Yagang, LI Lianwei, BIAN Qinghua. Effect of Stone Powder Content on Properties of C45 Tuff Manufactured Sand Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 775-783. |
[5] | WANG Chengping, ZHANG Jiasheng. Influence of Corrosion Inhibitor on Durability of Reinforced Concrete in Golmud Salt Lake Area [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 784-791. |
[6] | XU Cundong, HUANG Song, LI Hongfei, LI Zhen, LIAN Haidong, LI Zhirui. Damage of Mechanical Properties of Basalt Fiber Reinforced Concrete under Salt Freezing [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 812-820. |
[7] | XUE Wen, WANG Teng, CHENG Wenjie, SHEN Hongru, LI Yi, CHEN Jiangying, ZHU Yaohong. Influence of Low Temperature Freeze-Thaw Cycle on Dynamic Mechanical Properties of Ceramsite Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 821-828. |
[8] | PENG Yuqing, GUO Rongxin, LIN Zhiwei, ZHANG Min. Review on Influencing Factors of Mechanical Properties of Fly Ash Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 858-866. |
[9] | WANG Fei, LIU Ze, HAN Le, XIE Fuzhu. Preparation and Properties of Activated Coal Gangue Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 914-920. |
[10] | LIU Yang, WU Jinxiu, FENG Chunfu, YANG Shengwei, FENG Fushan, WANG Mitang. Preparation and Performance Characterization of Magnesium-Rich Nickel Slag-Fly Ash-Based Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 921-928. |
[11] | LI Xiaoguang, HOU Xinxin, LIANG Baozhen, WANG Panqi, ALI Saddam. Preparation and Performance Analysis of Iron Tailings Ceramsite Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 929-935. |
[12] | XIE Zixi, LIU Guibin, ZHANG Tianyu, LI Qiuyi, WANG Liang. Influence of Potassium-Based Alkaline Electrolyzed Water on Performance of Fly Ash Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 943-950. |
[13] | CHEN Pei, ZHOU Changrong. Effect of Ionic Pair (Nb5+-Cr3+) Doping on Microstructure and Electrical Properties of 0.93Bi0.5Na0.5TiO3-0.07BaTiO3 Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(3): 970-977. |
[14] | WANG Yanfeng, LIU Songhui, HAN Kang, ZHANG Li, GUAN Xuemao. Effect of Superfine CaCO3 on Properties of Sulphoaluminate Cement-Based Double Fluid Grouting Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(2): 368-376. |
[15] | ZHOU Jianwei, YU Baoying, KONG Yaning, YANG Wen, CHENG Baojun. Effect of Heat Treatment on Physical and Mechanical Properties of Polymer Modified Fiber Reinforced Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(2): 392-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||