BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (2): 664-675.
Special Issue: 耐火材料
• Refractory Materials • Previous Articles Next Articles
XU Zhiqiang, ZUO Haibin, LIU Lincheng
Received:
2020-09-06
Revised:
2020-11-05
Online:
2021-02-15
Published:
2021-03-10
[1] 程坤明,Jorg Mittag.影响高炉炉底炉缸炭砖使用寿命的因素[J].炼铁,2006,25(1):11-15. CHENG K M, MITTAG J. Factors influencing service life of carbon bricks lined on furnace bottom and hearth[J]. Ironmaking, 2006, 25(1): 11-15 (in Chinese). [2] 左海滨,王 聪,张建良,等.高炉炉缸耐火材料应用现状及重要技术指标[J].钢铁,2015,50(2):1-6. ZUO H B, WANG C, ZHANG J L, et al. Application status and important technical indexes of BF hearth refractory[J]. Iron & Steel, 2015, 50(2): 1-6 (in Chinese). [3] ZUO H B, WANG C, ZHANG J L, et al. Comparison of oxidation behaviors of novel carbon composite brick with traditional carbon brick[J]. Ceramics International, 2015, 41(6): 7929-7936. [4] 孙旭东.连铸用含纳米碳源低碳铝碳耐火材料的研究[J].耐火与石灰,2019,44(5):49-55. SUN X D. Study on the nanocarbon containing Al2O3-C continuous casting refractories with reduced fixed carbon content[J]. Refractories & Lime, 2019, 44(5): 49-55 (in Chinese). [5] PILLI V, SARKAR R. Nanocarbon containing Al2O3-C continuous casting refractories: effect of graphite content[J]. Journal of Alloys and Compounds, 2018, 735: 1730-1736. [6] 廖 宁,李亚伟,桑绍柏,等.纳米炭黑和鳞片石墨对低碳铝碳材料性能的影响[J].耐火材料,2015,49(1):6-12. LIAO N, LI Y W, SANG S B, et al. Effects of nano carbon black and graphite flake on properties of low carbon Al2O3-C refractories[J]. Refractories, 2015, 49(1): 6-12 (in Chinese). [7] ZHU T B, LI Y W, SANG S B, et al. Effect of nanocarbon sources on microstructure and mechanical properties of MgO-C refractories[J]. Ceramics International, 2014, 40(3): 4333-4340. [8] FAN H B, LI Y W, SANG S B. Microstructures and mechanical properties of Al2O3-C refractories with silicon additive using different carbon sources[J]. Materials Science and Engineering: A, 2011, 528(7/8): 3177-3185. [9] 伍积明,赵永安,李明欢.一种满足炉缸炉底安全的碳复合砖[C]//2017第二十届耐火材料应用与发展技术研讨会.黄山,2017. WU J M, ZHAO Y A, LI M H. A kind of carbon composite brick for the safety of hearth and bottom[C]//The 20th symposium on refractory application and development technology in 2017. Huangshan, 2017 (in Chinese). [10] Tritt T M. Thermal conductivity[M]. Boston: Springer, 2004. [11] ZHU T B, LI Y W, SANG S B, et al. Mechanical behavior and thermal shock resistance of MgO-C refractories: influence of graphite content[J]. Ceramics International, 2017, 43(9): 7177-7183. [12] LIAO N, LI Y W, WANG Q H, et al. Synergic effects of nano carbon sources on thermal shock resistance of Al2O3-C refractories[J]. Ceramics International, 2017, 43(16): 14380-14388. [13] BEHERA S, SARKAR R. Effect of different metal powder anti-oxidants on N220 nano carbon containing low carbon MgO-C refractory: an in-depth investigation[J]. Ceramics International, 2016, 42(16): 18484-18494. [14] 郭敬娜,田先明,洪学勤.低碳镁碳砖抗热震性能的改进[J].武汉科技大学学报,2008,31(s2):212-213. GUO J N, TIAN X M, HONG X Q. Improvement of thermal shock resistance of low carbon magnesia carbon brick[J]. Journal of Wuhan University of Science and Technology, 2008, 31(s2): 212-213 (in Chinese). [15] BAG M, ADAK S, SARKAR R. Study on low carbon containing MgO-C refractory: use of nano carbon[J]. Ceramics International, 2012, 38(3): 2339-2346. [16] 邵荣丹,张文杰,顾华志,等.超细炭素原料对Al2O3-ZrO2-C材料性能及微孔结构的影响[J].耐火材料,2005,39(5):330-332. SHAO R D, ZHANG W J, GU H Z, et al. Influence of ultra fine carbon powder on properties and millipore structure of Al2O3-ZrO2-C materials[J]. Refractories, 2005, 39(5): 330-332 (in Chinese). [17] WANG H, LI Y W, ZHU T B, et al. Strengthening of Al2O3-C slide gate plate refractories with microcrystalline graphite[J]. Ceramics International, 2017, 43(13): 9912-9918. [18] LUO M, LI Y W, JIN S L, et al. Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes[J]. Materials Science and Engineering: A, 2012, 548: 134-141. [19] LIAO N, LI Y W, JIN S L, et al. Enhanced mechanical performance of Al2O3-C refractories with nano carbon black and in situ formed multi-walled carbon nanotubes (MWCNTs)[J]. Journal of the European Ceramic Society, 2016, 36(3): 867-874. [20] 廖 宁,李亚伟,桑绍柏.添加硅和硅微粉氧化铝-碳纳米管耐火材料的制备与性能[J].硅酸盐学报,2017,45(3):433-440. LIAO N, LI Y W, SANG S B. Effects of silicon and microsilica additive on microstructure and mechanical properties of Al2O3-C multi-walled carbon nanotubes refractories[J]. Journal of the Chinese Ceramic Society, 2017, 45(3): 433-440 (in Chinese). [21] 杨立强,闫广周,黄 辉,等.酚醛树脂黏度对铝碳材料显微结构和力学性能的影响[J].耐火材料,2010,44:186-188. YANG L Q, YAN G Z, HUANG H, et al. Effect of phenolic resin viscosity on microstructure and mechanical properties of alumina-carbon materials[J]. Refractories(in Chinese), 2010, 44: 186-188 (in Chinese). [22] GARDZIELLA A, PILATO L A, KNOP A. Phenolic resins: chemistry, reactions, mechanism[M]//Phenolic Resins. Berlin: Springer, 2000: 24-82. [23] DEEMER E M, CHIANELLI R R. Modified asphalt[M]. IntechOpen, 2018. [24] DARBAN S, KAKROUDI M G, VANDCHALI M B, et al. Characterization of Ni-doped pyrolyzed phenolic resin and its addition to the Al2O3-C refractories[J]. Ceramics International, 2020, 46(13): 20954-20962. [25] RASTEGAR H, BAVAND-VANDCHALI M, NEMATI A, et al. Phase and microstructural evolution of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resin[J]. Ceramics International, 2019, 45(3): 3390-3406. [26] 贺淼琳.酚醛树脂基耐火材料的石墨化研究[J].耐火与石灰,2018,43(4):38-48. HE M L. Graphitization of phenolic resins for carbon-based refractories[J]. Refractories & Lime, 2018, 43(4): 38-48 (in Chinese). [27] TALABI S I, LUZ A P, LUCAS A A, et al. Catalytic graphitization of novolac resin for refractory applications[J]. Ceramics International, 2018, 44(4): 3816-3824. [28] CHEN Y Q, LIU G Q, HOU X J, et al. Influence of bonding carbon on low carbon Al2O3-C refractory composites[J]. Ceramics International, 2017, 43(17): 14599-14607. [29] 丁冬海,杨少雨,肖国庆.含碳耐火材料酚醛树脂结合剂的研究现状与展望[J].材料导报,2017,31(11):95-100. DING D H, YANG S Y, XIAO G Q. Progress in phenolic resin binder for carbon containing refractories[J]. Materials Review, 2017, 31(11): 95-100 (in Chinese). [30] 杨文刚,杨凤玲,李红霞,等.沥青种类和硝酸镍对铝碳材料性能与结构的影响[J].耐火材料,2016,50(5):325-328. YANG W G, YANG F L, LI H X, et al. Effects of pitch variety and nickel nitrate on performance and structure of Al2O3-C refractories[J]. Refractories, 2016, 50(5): 325-328 (in Chinese). [31] 方 伟,赵 雷,于晓燕,等.酚醛树脂在耐火材料中的应用及其研究现状[J].耐火材料,2013,47(4):303-306. FANG W, ZHAO L, YU X Y, et al. Applications and research status of phenolic resin in refractories[J]. Refractories, 2013, 47(4): 303-306 (in Chinese). [32] LUO M, LI Y W, SANG S B, et al. In situ formation of carbon nanotubes and ceramic whiskers in Al2O3-C refractories with addition of Ni-catalyzed phenolic resin[J]. Materials Science and Engineering: A, 2012, 558: 533-542. [33] 左小华,屈 媛,谭清平,等.用作耐火材料结合剂改性酚醛树脂的研究[J].化学工程与装备,2010(4):40-42+16. ZUO X H, QU Y, TAN Q P, et al. Study on modified phenolic resin as refractory binder[J]. Chemical Engineering & Equipment, 2010(4): 40-42+16 (in Chinese). [34] LIAO N, LI Y W, JIN S L, et al. Combined effects of boron carbide, silicon, and MWCNTs in alumina-carbon refractories on their microstructural evolution[J]. Journal of the American Ceramic Society, 2017, 100(1): 443-450. [35] LIAO N, LI Y W, JIN S L, et al. Reduced brittleness of multi-walled carbon nanotubes (MWCNTs) containing Al2O3-C refractories with boron carbide[J]. Materials Science and Engineering: A, 2017, 698: 80-87. [36] YAMAGUCHI A. Self-repairing function in the carbon-containing refractory[J]. International Journal of Applied Ceramic Technology, 2007, 4(6): 490-495. [37] ATZENHOFER C, GSCHIEL S, HARMUTH H. Phase formation in Al2O3-C refractories with Al addition[J]. Journal of the European Ceramic Society, 2017, 37(4): 1805-1810. [38] 石 凯,罗 焰,钟香崇.Al和Al-Si加入量对Al2O3-C材料高温性能的影响[J].耐火材料,2007,41(2):97-100+107. SHI K, LUO Y, ZHONG X C. Effects of Al and Al-Si contents on high-temperature properties of Al2O3-C material[J]. Refractories, 2007, 41(2): 97-100+107 (in Chinese). [39] 赵 飞,朱伯铨,李享成,等.Al粉、Si粉对低碳Al2O3-C滑板显微结构和高温力学性能的影响[J].耐火材料,2013,47(2):115-117. ZHAO F, ZHU B Q, LI X C, et al. Influences of Al and Si powders on microstructure and hot mechanical properties of Al2O3-C slide plates[J]. Refractories, 2013, 47(2): 115-117 (in Chinese). [40] DING J, YU C, LIU J P, et al. Effects of silicon powder content on the properties and interface bonding of nitrided Al2O3-C refractories[J]. Materials Chemistry and Physics, 2018, 206: 193-203. [41] 刘新红,钟香崇.加入不同量Al粉和Si粉的低碳Al2O3-C滑板的高温力学性能[J].耐火材料,2013,47(1):6-9. LIU X H, ZHONG X C. High temperature mechanical properties of Al and Si incorporated low carbon Al2O3-C slide plate materials[J]. Refractories, 2013, 47(1): 6-9 (in Chinese). [42] GHASEMI-KAHRIZSANGI S, DEHSHEIKH H G, KARAMIAN E. Impact of Titania nanoparticles addition on the microstructure and properties of MgO-C refractories[J]. Ceramics International, 2017, 43(17): 15472-15477. [43] WANG Q H, LI Y W, LIAO N, et al. Synthesis of boron and nitrogen-doped expanded graphite as efficient reinforcement for Al2O3-C refractories[J]. Ceramics International, 2017, 43(18): 16710-16721. [44] WATANABE A, TAKAHASHI H. Behavior of different metals added to MgO-C brick[J]. Taikabutsu (Japanese), 1986, 11(38): 740-746. [45] 刘耕夫,李亚伟,廖 宁,等.添加碳化硼对低碳铝碳耐火材料显微结构和性能的影响[J].硅酸盐学报,2017,45(9):1340-1346. LIU G F, LI Y W, LIAO N, et al. Effect of B4C additive on microstructure and mechanical properties of low carbon Al2O3-C refractories[J]. Journal of the Chinese Ceramic Society, 2017, 45(9): 1340-1346 (in Chinese). [46] ZHU T B, LI Y W, SANG S B, et al. Formation of nanocarbon structures in MgO-C refractories matrix: influence of Al and Si additives[J]. Ceramics International, 2016, 42(16): 18833-18843. [47] MERTKE A, ANEZIRIS C G. The influence of nanoparticles and functional metallic additions on the thermal shock resistance of carbon bonded alumina refractories[J]. Ceramics International, 2015, 41(1): 1541-1552. [48] ZHANG S, LEE W E. Influence of additives on corrosion resistance and corroded microstructures of MgO-C refractories[J]. Journal of the European Ceramic Society, 2001, 21(13): 2393-2405. [49] RYMON-LIPINSKI T, FICHTNER R, BENECKE T. Study of the oxidation protection of MgO-C refractories by means of boron carbide[J]. Steel Research, 1992, 63(11): 493-495. [50] WANG T M, YAMAGUCHI A. Oxidation protection of MgO-C refractories by means of Al8B4C7[J]. Journal of the American Ceramic Society, 2001, 84(3): 577-582. [51] DEHSHEIKH H G, GHASEMI-KAHRIZSANGI S. Performance improvement of MgO-C refractory bricks by the addition of nano-ZrSiO4[J]. Materials Chemistry and Physics, 2017, 202: 369-376. [52] 郭汉杰.冶金物理化学教程[M].北京:冶金工业出版社,2006. GUO H J. A course in physical chemistry of metallurgy[M]. Beijing: Metallurgical Industry Press, 2006. [53] YAMAGUCHI A, YU J K. Behavior of carbon obtained from pitch and resin added to carbon-containing refractories[J]. Journal of the Ceramic Society of Japan, 1994, 102(1181): 73-77. [54] KHEZRABADI M N, JAVADPOUR J, REZAIE H R, et al. The effect of additives on the properties and microstructures of Al2O3-C refractories[J]. Journal of Materials Science, 2006, 41(10): 3027-3032. [55] BRACHHOLD N, FRUHSTORFER J, MERTKE A, et al. Carbon-bonded alumina refractories with reduced carbon content due to the addition of semi-conductive silicon and/or nanoparticles[J]. Journal of Ceramic Science and Technology, 2016, 7(2): 209-222. [56] YIN C F, ZHANG J, LI X C, et al. Simulation and experimental investigation of preferred β-sialon growth and its effects on thermo-mechanical properties of Al2O3-C refractories[J]. Ceramics International, 2019, 45(14): 17298-17304. [57] 吕李华,肖国庆,刘 洋,等.添加MgB2对铝碳耐火材料抗氧化性能的影响[J].兵器材料科学与工程,2012,35(2):64-66. LV L H, XIAO G Q, LIU Y, et al. Effect of adding MgB2 on the oxidation resistance of Al2O3-C refractories[J]. Ordnance Material Science and Engineering, 2012, 35(2): 64-66 (in Chinese). [58] 刘新红,朱晓燕,马 腾,等.纳米技术在耐火材料中应用的研究进展[J].硅酸盐通报,2014,33(10):2514-2519+2526. LIU X H, ZHU X Y, MA T, et al. Study progress of applications of nano-technology in refractories[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(10): 2514-2519+2526 (in Chinese). [59] ROUNGOS V, ANEZIRIS C G. Improved thermal shock performance of Al2O3-C refractories due to nanoscaled additives[J]. Ceramics International, 2012, 38(2): 919-927. [60] GHASEMI-KAHRIZSANGI S, DEHSHEIKH H G, BOROUJERDNIA M. Effect of micro and nano-Al2O3 addition on the microstructure and properties of MgO-C refractory ceramic composite[J]. Materials Chemistry and Physics, 2017, 189: 230-236. [61] LAO X B, XU X Y, JIANG W H, et al. Effect of SiC nanoparticles on in situ synthesis of SiC whiskers in corundum-mullite-SiC composites obtained by carbothermal reduction[J]. Ceramics International, 2020, 46(7): 9225-9232. [62] MA B Y, YU J K. Synthesis of ZrO2-SiC composite powder and effect of its addition on properties of Al2O3-C refractories[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(5): 996-1000. [63] 王少华,彭 耐,邓承继,等.原位反应生成Sialon结合Al2O3-C材料的抗渣侵蚀机理[J].硅酸盐通报,2015,34(9):2501-2505. WANG S H, PENG N, DENG C J, et al. Mechanism of slag corrosion of in situ synthesis β-Sialon bonded Al2O3-C refractory[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(9): 2501-2505 (in Chinese). [64] DING D H, CHONG X C, XIAO G Q, et al. Combustion synthesis of B4C/Al2O3/C composite powders and their effects on properties of low carbon MgO-C refractories[J]. Ceramics International, 2019, 45(13): 16433-16441. [65] XU X W, LI Y X, ZHU J Q, et al. High-temperature oxidation behavior of Ti3AlC2 in air[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s869-s873. [66] WANG X H, ZHOU Y C. Oxidation behavior of Ti3AlC2 at 1 000~1 400 ℃ in air[J]. Corrosion Science, 2003, 45(5): 891-907. [67] 梅炳初,徐学文,朱教群,等.Ti3AlC2的制备与微观结构[J].硅酸盐学报,2004,32(7):897-900. MEI B C, XU X W, ZHU J Q, et al. Fabrication and microstructure of Ti3AlC2[J]. Journal of the Chinese Ceramic Society, 2004, 32(7): 897-900 (in Chinese). [68] CHEN J F, LI N, YAN W. Influence of Ti3AlC2 on corrosion resistance and microstructure of Al2O3-Ti3AlC2-C refractories in contact with ladle slag[J]. Journal of the European Ceramic Society, 2016, 36(6): 1505-1511. [69] CHEN J F, LI N, HUBÁLKOVÁ J, et al. Elucidating the role of Ti3AlC2 in low carbon MgO-C refractories: antioxidant or alternative carbon source?[J]. Journal of the European Ceramic Society, 2018, 38(9): 3387-3394. [70] CHEN J F, LI N, YAN W, et al. Influence of Ti3AlC2 on microstructure and thermal mechanical properties of Al2O3-Ti3AlC2-C refractories[J]. Ceramics International, 2016, 42(12): 14126-14134. |
[1] | HUANG Zhengfeng, OU Zhongwen, LUO Wei, WANG Fei, WANG Tingfu. Effects of Silica Fume and Shrinkage Reducing Admixture on Autogenous Shrinkage and Porosity of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(9): 3077-3083. |
[2] | GAO Yuan, JIN Zuquan, LI Ning. Influence of Oxygen Concentration on Reinforcement Corrosion in Seawater Sea-Sand Mortar Based onWire Beam Electrode Technique [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2672-2683. |
[3] | LI Long, LI Beixing, CHEN Pengbo, YIN Shi. Modification and Mechanism of Phosphorus Building Gypsum Using Admixtures [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2400-2410. |
[4] | CHEN Yang, DENG Chengji, LOU Xiaoming, DING Jun, YU Chao. Research Progress on Structure and Property Optimization of Low-Carbon MgO-C Refractories [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(6): 2153-2159. |
[5] | HUANG Jing, JI Wenyu, YAN Peiyu. Relationship of Workability and Rheological Properties of UHPC Slurry and Film Thickness of Particles [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(3): 766-776. |
[6] | ZENG Hao, TAN Xingmiao, LIANG Chaofeng. Research Progress of Effect of Granite Waste Sand and Powder on Properties of Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(2): 390-400. |
[7] | LIU Shipeng, ZHANG Huanhuan, CHENG Jinke. Technology and Mechanism of Leaching Ammonia Nitrogen from Electrolytic Manganese Residue with Oxalic Acid [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(2): 715-724. |
[8] | HE Shiqin, GAO Pengfei, BAI Ziyun, WANG Hui, SUN Dongxing, XU Shaofeng. Effect of Limestone Powder on Shrinkage Performance of Self-Compacting Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(10): 3428-3435. |
[9] | CHEN Shuai, WANG Qingping, WANG Yanjun, WU Qiugang, ZHAO Heng, CHEN Xiaoyang, LU Chunyang. Research Progress on Heavy Metal Ions Immobilized by Geopolymers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(10): 3501-3510. |
[10] | LI Baoyu. Rheological Properties of Graphene/Polyethylene Composite Modified Asphalt Binder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(7): 2461-2468. |
[11] | LIU Junli, REN Jie, TRAN Phuong Jonathan. A Review of Recent Research Progress of 3D-Printed Concrete in Australia [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1808-1813. |
[12] | CAO Qianfei, CUI Dong, SHI Xiaohan, WAN Yi, ZUO Xiaobao, LAI Jianzhong. Effect of Humidity Evolution on Microstructure and Mechanical Properties of Alternate 3D Printing Specimens [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1879-1888. |
[13] | LIU Wenjin, ZHOU Guoxiang, LIN Kunpeng, ZHANG Yanzhao, ZHAO Zhe, YANG Zhihua, JIA Dechang, ZHOU Yu. Research Progress on Slurry System of Ceramic 3D Printing Technology Based on Slurry Morphology [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 1918-1926. |
[14] | LI Renjun, ZHANG Ling, ZHANG Xiaoxu, WANG Zhigang, HU Yujiang. Effect of TiO2 Addition on Sintering Kinetics of Aluminum and Chromium Solid Solution [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(6): 2104-2109. |
[15] | JIN Xinxin, LIN Peng, LIU Feng, LI Saisai, LI Minghui, XIA Xiaoyu, LAO Dong, JIA Wenbao, SHAN Qing. Effects of Carbon Fiber Length and Content on Properties of SiC Reticulated Porous Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2021, 40(4): 1330-1337. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||