BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2021, Vol. 40 ›› Issue (2): 415-422.
Special Issue: 水泥混凝土
• Cement and Concrete • Previous Articles Next Articles
YANG Chenglin, XU Ying, HONG Jian, KONG Xinli
Received:
2020-09-03
Revised:
2020-09-30
Online:
2021-02-15
Published:
2021-03-10
[1] 秦 斌.海水海砂混凝土基本力学性能研究[J].混凝土,2019(2):90-91. QIN B. Basic mechanical properties of seawater and sea sand concrete[J]. Concrete, 2019(2): 90-91 (in Chinese). [2] 刘 伟,谢友均,董必钦,等.海砂特性及海砂混凝土力学性能的研究[J].硅酸盐通报,2014,33(1):15-22. LIU W, XIE Y J, DONG B Q, et al. Study on characteristics of dredged marine sand and the mechanical properties of concrete made with dredged marine sand[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 15-22 (in Chinese). [3] Gutt R J C. Sea-dredged aggregates in concrete[J]. Building Researching Establishment, 1987(1): 24-34. [4] NEWMAN K. Sea-dredged aggregates for concrete[J]. Cement Lime and Gravel, 1969(2): 5-9. [5] 俞洪春,郁 伟.海砂应用及钢筋混凝土结构耐腐蚀施工技术研究[J].建筑施工,2007,29(5):366-368. YU H C, YU W. Sea sand application and related study on anti-corrosion construction technology for RC structure[J]. Building Construction, 2007, 29(5): 366-368 (in Chinese). [6] 张 泳, 付 君. 我国台湾地区的 “海砂屋” 问题及其启示[J].基建优化,2004,25(6):49-50. ZHANG Y, FU J. The problems of sea sand in China Taiwan's building and its enlightenment[J]. Optimization of Capital Construction, 2004, 25(6): 49-50 (in Chinese). [7] 姜秀敏.服务海洋强国战略的海洋文化体系构建[J].中国海洋大学学报(社会科学版),2020(4):24-34. JIANG X M. The construction of marine cultural system to serve China's maritime power strategy[J]. Journal of Ocean University of China (Social Sciences), 2020(4): 24-34 (in Chinese). [8] 陈宝君,王建廷.习近平海洋强国战略与我国南海发展战略[J].齐齐哈尔大学学报(哲学社会科学版),2019(3):1-3. CHEN B J, WANG J T. The influence of Xi Jinping's marine power strategy on the South China sea[J]. Journal of Qiqihar University (Philosophy and Social Science Edition), 2019(3): 1-3 (in Chinese). [9] 李田雨,张玉梅,刘小艳,等.海水海砂高性能海工混凝土力学及早期工作性研究[J].混凝土,2019(11):1-5. LI T Y, ZHANG Y M, LIU X Y, et al. Research on the preparation and durability of brine marine sand high performence concrete[J]. Concrete, 2019(11): 1-5 (in Chinese). [10] 肖建庄,张 鹏,张青天,等.海水海砂再生混凝土的基本力学性能[J].建筑科学与工程学报,2018,35(2):16-22. XIAO J Z, ZHANG P, ZHANG Q T, et al. Basic mechanical properties of seawater sea-sand recycled concrete[J]. Journal of Architecture and Civil Engineering, 2018, 35(2): 16-22 (in Chinese). [11] 郭 东,苏春义,彭自强,等.海水拌和珊瑚礁砂混凝土力学性能及微观结构[J].建筑材料学报,2018,21(1):41-46. GUO D, SU C Y, PENG Z Q, et al. Mechanical properties and microstructure of concrete prepared with coral reef sand and sea water[J]. Journal of Building Materials, 2018, 21(1): 41-46 (in Chinese). [12] GHORAB H Y, HILAL M S, ANTAR A. Effect of mixing and curing waters on the behaviour of cement pastes and concrete Part 2: properties of cement paste and concrete[J]. Cement and Concrete Research, 1990, 20(1): 69-72. [13] 窦雪梅,余红发,麻海燕,等.海洋环境下珊瑚混凝土的表面氯离子浓度规律[J].硅酸盐通报,2016,35(9):2695-2700. DOU X M, YU H F, MA H Y, et al. Surface chloride concentration profiles of coral concrete exposed to marine environment[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(9): 2695-2700 (in Chinese). [14] SAFI B, SAIDI M, DAOUI A, et al. The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM)[J]. Construction and Building Materials, 2015, 78: 430-438. [15] KARTHIKEYAN M, NAGARAJAN V. Feasibility study on utilization of marine sand in concrete for sustainable development[J]. Indian Journal of Marine Sciences, 2016, 45(2): 313-318. [16] 程 琤,李星震.海砂混凝土配比中海砂含量的优化试验研究[J].淮海工学院学报(自然科学版),2019,28(2):61-64. CHENG C, LI X Z. Experimental study on the optimization of sea sand content in the proportion of sea sand concrete[J]. Journal of Huaihai Institute of Technology (Natural Science Edition), 2019, 28(2): 61-64 (in Chinese). [17] NIU D T, SU L, LUO Y, et al. Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete[J]. Construction and Building Materials, 2020, 237: 117628. [18] 蔡红明.海洋原材料制备的混凝土基本性能研究[D].镇江:江苏科技大学,2019. CAI H M. Study on the basic properties of concrete prepared from marine raw materials[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019 (in Chinese). [19] 耿耀明,刘文燕,钱 钤.碳纤维增强混凝土轴向压缩应力应变全过程曲线[J].建筑结构,2006,36(12):33-35. GENG Y M, LIU W Y, QIAN Q. Stress-strain curve of CFC under compression[J]. Building Structure, 2006, 36(12): 33-35 (in Chinese). [20] 邢 丽,薛瑞丰,曹 喜.海砂海水混凝土性能研究[J].混凝土,2015(11):137-141. XING L, XUE R F, CAO X. Performance of concrete with sea sand and sea water[J]. Concrete, 2015(11): 137-141 (in Chinese). [21] 王 磊,谷文慧,汪 稔,等.碳纤维增强珊瑚混凝土抗冲击性能试验研究[J].硅酸盐通报,2019,38(10):3339-3343. WANG L, GU W H, WANG R, et al. Experimental study on shock resistance of carbon fiber reinforced coral concrete[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3339-3343 (in Chinese). [22] ABRAMS D A. Effect of rate of application of load on the compressive strength of concrete[J]. Astm Journal, 1917, 17: 364-377. [23] GRIME G, STRADLING R E, JAPP S H, et al. Discussion. the behaviour of reinforced concrete piles during driving[J]. Journal of the Institution of Civil Engineers, 1935, 1(2): 203-234. [24] 单 波,刘 波,肖 岩,等.大尺寸CFRP约束混凝土方柱落锤动态冲击试验研究[J].振动与冲击,2016,35(20):90-97. SHAN B, LIU B, XIAO Y, et al. Experimental research on large-scale square columns confined with wrapped CFRP under drop hammer impact load[J]. Journal of Vibration and Shock, 2016, 35(20): 90-97 (in Chinese). [25] 刘 练,霍静思,刘艳芝,等.普通混凝土落锤冲击动态力学性能试验研究[J].铁道科学与工程学报,2018,15(6):1415-1423. LIU L, HUO J S, LIU Y Z, et al. Experimental study on dynamic mechanical properties of ordinary concrete under drop hammer impact loading[J]. Journal of Railway Science and Engineering, 2018, 15(6): 1415-1423 (in Chinese). [26] 赵志青,余振鹏,孙 雪,等.不同取代率再生混凝土基本力学性能试验研究[J].混凝土,2019(3):86-89+93. ZHAO Z Q, YU Z P, SUN X, et al. Experimental study on basic mechanical properties of recycled aggregate concrete with different substitution rate[J]. Concrete, 2019(3): 86-89+93 (in Chinese). [27] 李木国,张 群,王 静,等.大型液压伺服混凝土静动三轴试验机[J].大连理工大学学报,2003,43(6):812-817. LI M G, ZHANG Q, WANG J, et al. Large scale static and dynamic concrete hydraulic servo triaxial testing equipment[J]. Journal of Dalian University of Technology, 2003, 43(6): 812-817 (in Chinese). [28] 倪洪将,余振鹏,谢兴华.普通混凝土局部受压与偏载力学性能试验研究[J].混凝土,2018(12):44-47. NI H J, YU Z P, XIE X H. Experimental study on local compressive and eccentric mechanical behaviors of ordinary concrete[J]. Concrete, 2018(12): 44-47 (in Chinese). [29] 张 军,赵志青,朱从香.自密实系列混凝土基本力学性能试验研究[J].混凝土与水泥制品,2019(3):19-23. ZHANG J, ZHAO Z Q, ZHU C X. Experimental study on basic mechanical performance of self-compacting concrete[J]. China Concrete and Cement Products, 2019(3): 19-23 (in Chinese). [30] 曹吉星,陈 虬,张吉萍.混凝土SHPB试验的数值模拟及应力均匀性[J].西南交通大学学报,2008,43(1):67-70. CAO J X, CHEN Q, ZHANG J P. Simulation of SHPB test on concrete and uniformity of stresses[J]. Journal of Southwest Jiaotong University, 2008, 43(1): 67-70 (in Chinese). [31] JU Y, WANG H J, YANG Y M, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses[J]. Science China Technological Sciences, 2010, 53(4): 1098-1113. [32] 陶俊林,陈裕泽,田常津,等.SHPB系统圆柱形试件的惯性效应分析[J].固体力学学报,2005,26(1):107-110. TAO J L, CHEN Y Z, TIAN C J, et al. Analysis of the inertial effect of the cylindrical specimen in shpb system[J]. Acta Mechanica Solida Sinica, 2005, 26(1): 107-110 (in Chinese). [33] MA H Y, YUE C J, YU H F, et al. Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete[J]. International Journal of Impact Engineering, 2020, 137: 103466. [34] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates[J]. Materials and Structures, 1991, 24(6): 425-450. [35] Comite Euro-international du Beton[J]. CEP-FIP Model Code 1990, 1990. [36] MA L J, LI Z, LIU J G, et al. Mechanical properties of coral concrete subjected to uniaxial dynamic compression[J]. Construction and Building Materials, 2019, 199: 244-255. [37] 方 秦,洪 建,张锦华,等.混凝土类材料霍普金森压杆实验若干问题研究[C]//第22届全国结构工程学术会议论文集,乌鲁木齐,2013:46-64. FANG Q, HONG J, ZHANG J H, et al. Some issues related to SHPB test on concrete-like materials[C]//Proceedings of the 22nd National Conference on Structural Engineering, Urumqi, 2013: 46-64 (in Chinese). [38] 王 勇.混凝土类材料在霍普金森杆实验中的受力状态研究[D].北京:北京理工大学,2015. WANG Y. Study the stress state of concrete-like materials in SHPB experiment test[D]. Beijing: Beijing Institute of Technology, 2015 (in Chinese). [39] AHMED A, GUO S C, ZHANG Z H, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete[J]. Construction and Building Materials, 2020, 256: 119484. [40] ELGABBAS F, AHMED E A, BENMOKRANE B. Physical and mechanical characteristics of new basalt-FRP bars for reinforcing concrete structures[J]. Construction and Building Materials, 2015, 95: 623-635. [41] LI Y L, ZHAO X L, RAMAN S R K, et al. Tests on seawater and sea sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns[J]. Thin-Walled Structures, 2016, 108: 163-184. [42] ZHOU A, QIN R Y, CHOW C L, et al. Structural performance of FRP confined seawater concrete columns under chloride environment[J]. Composite Structures, 2019, 216: 12-19. [43] 原 天.自然暴露时间对FRP筋海水海砂混凝土梁受弯性能的影响[D].广州:广州大学,2019. YUAN T. Influence of natural exposure on flexural property of FRP rods and concrete beams made of sea water and sea sand[D]. Guangzhou: Guangzhou University, 2019 (in Chinese). [44] YANG J L, WANG J Z, WANG Z R. Axial compressive behavior of partially CFRP confined seawater sea-sand concrete in circular columns-part I: experimental study[J]. Composite Structures, 2020, 246: 112373. [45] 李树旺.BFRP筋海砂混凝土梁受剪性能试验研究[D].广州:广东工业大学,2014. LI S W. Experiment studies on the shear performance of sea sand concrete beam with BFRP tendons[D]. Guangzhou: Guangdong University of Technology, 2014 (in Chinese). [46] 金云东.BFRP筋—海水海砂混凝土梁短长期力学性能研究[D].南京:东南大学,2016. JIN Y D. Research on short-and long-term mechanical properties of bfrp bar reinforced marine sand concrete beams[D]. Nanjing: Southeast University, 2016 (in Chinese). [47] 刘 喜,王 征,吴 涛.FRP筋混凝土梁挠度与裂缝宽度计算模型分析[J].建筑科学与工程学报,2017,34(5):163-170. LIU X, WANG Z, WU T. Calculation model of deflection and crack width of concrete beam reinforced with FRP bars[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 163-170 (in Chinese). [48] 李猛深,李 杰,李 宏,等.爆炸荷载下钢筋混凝土梁的变形和破坏[J].爆炸与冲击,2015,35(2):177-183. LI M S, LI J, LI H, et al. Deformation and failure of reinforced concrete beams under blast loading[J]. Explosion and Shock Waves, 2015, 35(2): 177-183 (in Chinese). [49] 柳锦春,方 秦,龚自明,等.爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析[J].爆炸与冲击,2003,23(1):25-30. LIU J C, FANG Q, GONG Z M, et al. Analysis of dynamic respo nses and failure modes of R/C beams under blast loading[J]. Explosion and Shock Waves, 2003, 23(1): 25-30 (in Chinese). [50] 方 秦,柳锦春,张亚栋,等.爆炸荷载作用下钢筋混凝土梁破坏形态有限元分析[J].工程力学,2001,18(2):1-8. FANG Q, LIU J C, ZHANG Y D, et al. Finite element analysis of failure modes of blast-loaded r/c beams[J]. Engineering Mechanics, 2001, 18(2): 1-8 (in Chinese). [51] 方 秦,吴平安.爆炸荷载作用下影响RC梁破坏形态的主要因素分析[J].计算力学学报,2003,20(1):39-42+48. FANG Q, WU P A. Main factors affecting failure modes of blast loaded RC beams[J]. Chinese Journal of Computational Mechanicschinese Journal of Computational Mechanics, 2003, 20(1): 39-42+48 (in Chinese). [52] 汪 维,刘瑞朝,吴 飚,等.爆炸荷载作用下钢筋混凝土梁毁伤判据研究[J].兵工学报,2016,37(8):1421-1429. WANG W, LIU R C, WU B, et al. Damage criteria of reinforced concrete beams under blast loading[J]. Acta Armamentarii, 2016, 37(8): 1421-1429 (in Chinese). [53] 高 琴.高强钢筋混凝土板在爆炸载荷下的动态响应研究[D].武汉:武汉科技大学,2019. GAO Q. Study on dynamic response of high strength reinforced concrete slab subjected to blast loads[D]. Wuhan: Wuhan University of Science and Technology, 2019 (in Chinese). [54] 张 帝,杨 军. 钢筋混凝土排架结构的抗爆破坏等级[J].爆炸与冲击,2020:1-14 ZHANG Di, YANG Jun. Damage grades of reinforced concrete bent structures against blast[J]. Explosion and Shock Waves, 2020: 1-14 (in Chinese). [55] 高 超,宗周红,伍 俊.爆炸荷载下钢筋混凝土框架结构倒塌破坏试验研究[J].土木工程学报,2013,46(7):9-20. GAO C, ZONG Z H, WU J. Experimental study on progressive collapse failure of RC frame structures under blast loading[J]. China Civil Engineering Journal, 2013, 46(7): 9-20 (in Chinese). [56] 李 兴.CFRP约束钢管混凝土圆柱抗爆性能的有限元分析[D].太原:中北大学,2019. LI X. Finite element analysis of antiknock performance of CFRP confined concrete filled steel cylindrical columns[D]. Taiyuan: North University of China, 2019 (in Chinese). [57] 王洪辉,陈海龙.碳纤维增强复合材料管混凝土拱的制备和抗爆试验[J].兵器装备工程学报,2018,39(10):149-154. WANG H H, CHEN H L. Fabrication and explosion resistance test of carbon fiber reinforced polymer tubular arch[J]. Journal of Ordnance Equipment Engineering, 2018, 39(10): 149-154 (in Chinese). [58] 刘三丰,金丰年,周寅智,等.GFRP筋混凝土梁抗爆性能试验研究与数值分析[J].中国科学:物理学 力学 天文学,2020,50(2):90-101. LIU S F, JIN F N, ZHOU Y Z, et al. Experimental study and numerical simulation of explosion resistance of GFRP reinforced concrete beams[J]. Scientia Sinica (Physica,Mechanica and Astronomica), 2020, 50(2): 90-101 (in Chinese). [59] GAO Y J, ZHOU Y Z, ZHOU J N, et al. Blast responses of one-way sea-sand seawater concrete slabs reinforced with BFRP bars[J]. Construction and Building Materials, 2020, 232: 117254. |
[1] | WANG Chuanlin, ZHANG Siyi, HUANG Junxuan, JIANG Tao, LIANG Ping, ZHOU Zhibing, WANG Yihong. Effect of Flocculant on Properties of Portland Cement Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(9): 3028-3035. |
[2] | XU Xin, ZHANG Hongru, JI Tao, ZHAO Baojun, YAO Jie. Effect of Moisture State of Recycled Fine Aggregate onProperties of Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(9): 3036-3046. |
[3] | ZHANG Ping, MA Xudong, HAN Shijie, GU Longlong, WANG Zhangyan. Effect Mechanism of Curing Temperature on Mechanical Properties of Tuff-Based Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(9): 3148-3153. |
[4] | XIANG Yu, YU Jinshan, WANG Honglei, ZHOU Xingui. Research Progress on High Temperature Oxidation Resistance of SiC Fibers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(9): 3234-3242. |
[5] | GAO Fuhao, WANG Lu, LIU Shuhua. Deterioration Mechanism of Supersulfated Cement Paste by Acid Erosion [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2618-2627. |
[6] | HE Xiangxiang, MEI Junpeng, JIANG Tianhua, LI Hainan, XU Zhidong, WANG Zhixin, ZHOU Lanlan, ZHOU Zhiyang. Effect of EVA on Microstructure and Mechanical Properties of Calcium Sulfoaluminate Cement Paste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2628-2636. |
[7] | ZHANG Jianbo, CHEN Shengping, LU Yingfa. Deflection and Ductility of FRP Bars Reinforced Concrete Superposed Beams [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2739-2747. |
[8] | ZHANG Yue, WANG Hongjie, YANG Lin, CHEN Hong, CAO Jianxin. Influence of Phosphogypsum Particle Size on Properties and Microstructure of Wet-Mixed Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2836-2843. |
[9] | GAO Min, GUO Qilong, DU Lei, HUA Liang, LIU Ronghao, WANG Chunya, MA Zhitong. Effect of Regenerated Micropowder on Properties of Dry Mixed Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(8): 2851-2859. |
[10] | WEI Kuo, LIU Sifeng. Effects of Calcium Sulphoaluminate Expansion Agent and Magnesia Expansion Agent on Properties of Styrene-Butadiene Copolymer Dispersion Modified Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2244-2250. |
[11] | ZHAO Yaming, ZHANG Mingfei, ZHANG Zhen, LUO Yaofei. Performance of Hybrid Fiber Reinforced High-Strength Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2299-2307. |
[12] | CHENG Gaoli, LI Xiaoguang, WANG Panqi, MA Ronggui. Influence of Fineness Change of Limestone Powder-Fly Ash on Hydration Kinetics of Cement-Based Cementitious Material System [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2337-2343. |
[13] | CAO Ganghao, JIAN Shouwei, WEI Bo, LI Baodong, ZHAO Jinpeng. Mechanical Properties and Interface Characteristics of Iron Tailings Sand-Based Epoxy Resin Permeable Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2384-2392. |
[14] | CUI Ning, LUAN Zhonghao. Mechanical Properties of Recycled Fine Powder Foamed Cementitious Materials for Brick and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2421-2429. |
[15] | ZHANG Jing, ZHANG Weiru, SUN Feng, XU Xuemin, WANG Zaiyi, LYU Peiyuan, WANG Mei. Effect of Y2O3 on Microstructure and Properties of High Thermal Conductivity Si3N4 Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2022, 41(7): 2485-2493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||