[1] STRAUB C, YUAN B, BROUWERS H J H, et al. Valorization of municipal waste glass powder in autoclaved aerated concrete: microstructural evolution and performance analysis[J]. Journal of Building Engineering, 2025, 105: 112335. [2] NARAYANAN N, RAMAMURTHY K. Structure and properties of aerated concrete: a review[J]. Cement and Concrete Composites, 2000, 22(5): 321-329. [3] 韩林岩, 姚贤华, 万铭铎, 等. 大掺量循环流化床粉煤灰基全固废免蒸压加气混凝土配合比优化[J/OL]. 华北水利水电大学学报(自然科学版), 2025: 1-11 (2025-08-21) [2025-09-24]. https://link.cnki.net/urlid/41.1432.TV.20250821.1128.004. HAN L Y, YAO X H, WAN M D, et al. Optimization of the mix ratio of all-solid-waste, non-autoclaved aerated concrete prepared with high-content circulating fluidized bed fly ash[J/OL]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2025: 1-11 (2025-08-21) [2025-09-24]. https://link.cnki.net/urlid/41.1432.TV.20250821.1128.004 (in Chinese). [4] XIA Y Q, YAN Y, HU Z H. Utilization of circulating fluidized bed fly ash in preparing non-autoclaved aerated concrete production[J]. Construction and Building Materials, 2013, 47: 1461-1467. [5] SUKMANA N C, KHIFDILLAH M I, NURKHOLIL A S, et al. Optimization of non-autoclaved aerated concrete using phosphogypsum of industrial waste based on the taguchi method[J]. IOP Conference Series: Materials Science and Engineering, 2019, 509: 012095. [6] QUAN W L, HUANG W, MAO W Z, et al. Preparing autoclaved aerated concrete using molybdenum tailings[J]. Journal of Building Engineering, 2024, 95: 110138. [7] MA B G, CAI L X, LI X G, et al. Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products[J]. Journal of Cleaner Production, 2016, 127: 162-171. [8] KUNCHARIYAKUN K, ASAVAPISIT S, SINYOUNG S. Influence of partial sand replacement by black rice husk ash and bagasse ash on properties of autoclaved aerated concrete under different temperatures and times[J]. Construction and Building Materials, 2018, 173: 220-227. [9] 王长龙, 乔春雨, 王 爽, 等. 煤矸石与铁尾矿制备加气混凝土的试验研究[J]. 煤炭学报, 2014, 39(4): 764-770. WANG C L, QIAO C Y, WANG S, et al. Experimental study on autoclaved aerated concrete from coal gangue and iron ore tailings[J]. Journal of China Coal Society, 2014, 39(4): 764-770 (in Chinese). [10] CAI L X, LI X G, LIU W L, et al. The slurry and physical-mechanical performance of autoclaved aerated concrete with high content solid wastes: effect of grinding process[J]. Construction and Building Materials, 2019, 218: 28-39. [11] 陈永亮, 成 亮, 陈铁军, 等. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 126-131. CHEN Y L, CHENG L, CHEN T J, et al. Properties and hydration mechanism of autoclaved aerated concrete prepared by waste concrete and waste clay brick[J]. Materials Reports, 2024, 38(12): 126-131 (in Chinese). [12] 房天齐, 黄 舒, 乔秀臣. 循环流化床灰蒸压加气混凝土中延迟形成钙矾石的研究[J]. 硅酸盐通报, 2023, 42(7): 2439-2446. FANG T Q, HUANG S, QIAO X C. Delayed formation of ettringite in autoclaved aerated concrete with circulating fluidized bed fly ash[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2439-2446 (in Chinese). [13] BILONDI M P, TOUFIGH M M, TOUFIGH V. Using calcium carbide residue as an alkaline activator for glass powder-clay geopolymer[J]. Construction and Building Materials, 2018, 183: 417-428. [14] 侯圣举, 李树国, 何 超, 等. 再生微粉-电石渣制备硅酸盐水泥熟料及其水化性能研究[J]. 材料导报, 2024, 38(22): 48-53. HOU S J, LI S G, HE C, et al. Study on the preparation of clinker from recycled concrete powder and calcium carbide slag and its hydration properties[J]. Materials Reports, 2024, 38(22): 48-53 (in Chinese). [15] 万宗华, 张文芹, 刘志超, 等. 电石渣-矿渣复合胶凝材料性能研究[J]. 硅酸盐通报, 2022, 41(5): 1704-1714. WAN Z H, ZHANG W Q, LIU Z C, et al. Properties of carbide slag-slag composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1704-1714 (in Chinese). [16] SUN D S, YIN F X, DENG Y, et al. Utilization of carbide slag in autoclaved aerated concrete (CS-AAC) and optimization: foaming, hydration process, and physic-mechanical properties[J]. Case Studies in Construction Materials, 2023, 19: e02354. [17] 檀 星, 韩福强, 赵风清. 一种全固废蒸压轻质砌块的研制[J]. 新型建筑材料, 2018, 45(11): 112-115+142. TAN X, HAN F Q, ZHAO F Q. Development of a solid waste based autoclaved lightweight block[J]. New Building Materials, 2018, 45(11): 112-115+142 (in Chinese). [18] GUO R N, CHEN Q Y, HUANG H, et al. Carbonation curing of industrial solid waste-based aerated concretes[J]. Greenhouse Gases: Science and Technology, 2019, 9(2): 433-443. [19] CHEN C, LIU X, WANG X F, et al. Development of sustainable non-autoclaved aerated concrete: influence of aluminium powder on mechanical properties and pore structure of geopolymers based on rockwool furnace bottom slag waste[J]. Construction and Building Materials, 2025, 472: 140957. [20] 姜 勇, 齐子刚. 蒸压加气混凝土生产技术[M]. 北京: 中国建材工业出版社, 2021: 84-134. JIANG Y, QI Z G. Production technology of autoclaved aerated concrete[M]. Beijing: China Building Materials Industry Press, 2021: 84-134 (in Chinese). [21] 全国水泥制品标准化技术委员会(SAC/TC 197). 蒸压加气混凝土性能试验方法: GB/T 11969—2020[S]. 北京: 中国标准出版社, 2020. Ecological Concrete Elements (SAC/TC 197). Test methods of autoclaved aerated concrete: GB/T 11969—2020[S]. Beijing: Standards Press of China, 2020 (in Chinese). [22] ZHAO X H, WANG H Y, JIANG L L, et al. Long-term physical and mechanical properties and microstructures of fly-ash-based geopolymer composite incorporating carbide slag[J]. Materials, 2021, 14(21): 6692. [23] 曾 路, 余意恒, 任 毅, 等. 碱激发钢渣-矿渣加气混凝土的制备研究[J]. 建筑材料学报, 2019, 22(2): 206-213. ZENG L, YU Y H, REN Y, et al. Preparation of aerated concrete with alkali activated steel slag and blast furnace slag[J]. Journal of Building Materials, 2019, 22(2): 206-213 (in Chinese). [24] 王 辉, 高 尚, 郭美丽, 等. 粉煤灰-矿渣基泡沫地聚合物微观孔隙结构与宏观性能[J]. 建筑材料学报, 2024, 27(5): 461-470. WANG H, GAO S, GUO M L, et al. Micro-pore structure and macro-properties of fly ash-slag based foam geopolymer[J]. Journal of Building Materials, 2024, 27(5): 461-470 (in Chinese). [25] XU F, GU G H, ZHANG W, et al. Pore structure analysis and properties evaluations of fly ash-based geopolymer foams by chemical foaming method[J]. Ceramics International, 2018, 44(16): 19989-19997. [26] JAYA N A, YUN-MING L, CHENG-YONG H, et al. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer[J]. Construction and Building Materials, 2020, 247: 118641. [27] 张庆欢. 粉煤灰在复合胶凝材料水化过程中的作用机理[D]. 北京: 清华大学, 2006: 31-37. ZHANG Q H. Mechanism of fly ash in hydration process of composite cementitious materials[D]. Beijing: Tsinghua University, 2006: 31-37 (in Chinese). [28] 李 响, 阎培渝. 高温养护对复合胶凝材料水化程度及微观形貌的影响[J]. 中南大学学报(自然科学版), 2010, 41(6): 2321-2326. LI X, YAN P Y. Effect of high temperature curing on hydration degree and micro-morphology of complex binders[J]. Journal of Central South University (Science and Technology), 2010, 41(6): 2321-2326 (in Chinese). [29] 包益鋆, 王宁宁, 李书进, 等. 电石渣-脱硫灰复掺对流态固化土基本性能及微观特性的影响[J]. 硅酸盐通报, 2023, 42(12): 4449-4455. BAO Y J, WANG N N, LI S J, et al. Influence of calcium carbide slag-desulfurization ash on basic properties and microscopic characteristics of fluid solidified soil[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4449-4455 (in Chinese). [30] 罗晓洪, 张世俊, 郭荣鑫, 等. 电石渣替代水泥作碱激发剂对过硫磷石膏胶凝材料性能和微观结构的影响[J]. 材料导报, 2023, 37(增刊2): 298-304. LUO X H, ZHANG S J, GUO R X, et al. Effect of carbide slag instead of cement as alkali activator on properties and microstructure of superphosphate gypsum cementitious materials[J]. Materials Reports, 2023, 37(supplement 2): 298-304 (in Chinese). [31] 郭建鹏. 利用电石渣生产轻质高强蒸压加气混凝土砌块的研究[D]. 石河子: 石河子大学, 2023. GUO J P. Study on the production of light and high strength autoclaved aerated concrete block with carbide slag[D]. Shihezi: Shihezi University, 2023 (in Chinese). [32] 罗 旷, 张 威, 张 力, 等. 二氧化碳矿化养护全固废加气混凝土研究[J]. 能源工程, 2023, 43(2): 41-47. LUO K, ZHANG W, ZHANG L, et al. Study on CO2 mineralized curing all-solid waste aerated concrete[J]. Energy Engineering, 2023, 43(2): 41-47 (in Chinese). [33] 郑 鹏, 李蔚玲. 鼓泡床中电石渣液相碳酸化反应流动特性表征[J]. 南京师范大学学报(工程技术版), 2022, 22(2): 1-8. ZHENG P, LI W L. Characteristics of carbide slag slurry flow in a bubble column reactor[J]. Journal of Nanjing Normal University (Engineering and Technology Edition), 2022, 22(2): 1-8 (in Chinese). [34] WU R D, DAI S B, JIAN S W, et al. Utilization of the circulating fluidized bed combustion ash in autoclaved aerated concrete: effect of superplasticizer[J]. Construction and Building Materials, 2020, 237: 117644. |