[1] 修建得, 金祖权, 李 宁, 等. 海洋盐雾环境下混凝土中氯离子传输研究进展[J]. 硅酸盐通报, 2023, 42(3): 771-785. XIU J D, JIN Z Q, LI N, et al. Research progress of chloride ion transport in concrete under marine salt spray environment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 771-785 (in Chinese). [2] LI X Y, XU F, CHEN B G, et al. Investigation on the chloride ion erosion mechanism of cement mortar in coastal areas: from experiments to molecular dynamics simulation[J]. Construction and Building Materials, 2022, 350: 128810. [3] 崔钊玮, 刘荣桂, 陆春华, 等. 干湿循环与受弯裂缝共同作用下海工砼梁内氯离子侵蚀及耐久性寿命预测[J]. 硅酸盐通报, 2020, 39(2): 344-351. CUI Z W, LIU R G, LU C H, et al. Chloride ion erosion and durability life prediction of marine concrete beams under combined action of dry-wet cycle and flexural cracks[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 344-351 (in Chinese). [4] RUNCI A, PROVIS J, SERDAR M. Microstructure as a key parameter for understanding chloride ingress in alkali-activated mortars[J]. Cement and Concrete Composites, 2022, 134: 104818. [5] WILSON W, GEORGET F, SCRIVENER K. Unravelling chloride transport/microstructure relationships for blended-cement pastes with the mini-migration method[J]. Cement and Concrete Research, 2021, 140: 106264. [6] FU Q, BU M X, ZHANG Z R, et al. Chloride ion transport performance of lining concrete under coupling the action of flowing groundwater and loading[J]. Cement and Concrete Composites, 2021, 123: 104166. [7] WU L J, JIANG H, JU X L, et al. Service life evaluation of marine reinforced concrete structures in coastal soda residue soil subjected to chloride attack[J]. Construction and Building Materials, 2024, 455: 139222. [8] CHEN X D, FU F, WANG H, et al. A multi-phase mesoscopic simulation model for the long-term chloride ingress and electrochemical chloride extraction[J]. Construction and Building Materials, 2021, 270: 121826. [9] 刘玉美, 杨 浪, 饶 峰, 等. 氯离子对海工混凝土钢筋腐蚀的研究进展[J]. 硅酸盐通报, 2023, 42(9): 3059-3074. LIU Y M, YANG L, RAO F, et al. Research progress of chloride ions on corrosion of marine concrete reinforcement[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3059-3074 (in Chinese). [10] WANG H L, CHEN Z W, LI H D, et al. Numerical simulation of external sulphate attack in concrete considering coupled chemo-diffusion-mechanical effect[J]. Construction and Building Materials, 2021, 292: 123325. [11] INATY F, MARCHETTI M, QUIERTANT M, et al. Chemical mechanisms involved in the coupled attack of sulfate and chloride ions on low-carbon cementitious materials: an in-depth study[J]. Applied Sciences, 2023, 13(21): 11729. [12] YANG P, DHANDAPANI Y, SANTHANAM M, et al. Simulation of chloride diffusion in fly ash and limestone-calcined clay cement (LC3) concretes and the influence of damage on service-life[J]. Cement and Concrete Research, 2020, 130: 106010. [13] CHEN Y J, GAO J M, TANG L P, et al. Resistance of concrete against combined attack of chloride and sulfate under drying-wetting cycles[J]. Construction and Building Materials, 2016, 106: 650-658. [14] 于永齐. 模拟海洋环境下氯离子侵蚀混凝土试验研究[D]. 郑州: 华北水利水电大学, 2016. YU Y Q. Experimental study on chloride ion erosion of concrete in simulated marine environment[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2016 (in Chinese). [15] 吕 攀. 海水波动对混凝土中氯离子传输规律的影响研究[D]. 深圳: 深圳大学, 2019. LYU P. Study on the influence of seawater fluctuation on the transport law of chloride ion in concrete[D]. Shenzhen: Shenzhen University, 2019 (in Chinese). [16] CHENG S K, SHUI Z H, SUN T, et al. Synergistic effects of sulfate and magnesium ions on chloride diffusion behaviors of Portland cement mortar[J]. Construction and Building Materials, 2019, 229: 116878. [17] 李田雨, 王维康, 李扬涛, 等. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110. LI T Y, WANG W K, LI Y T, et al. Corrosion failure mechanism of ultra-high-performance concretes prepared with sea water and sea sand in an artificial sea water containing sulfate[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5): 1101-1110 (in Chinese). [18] 李福海, 黄绍宁, 肖 赛, 等. 高温-干湿循环作用下混凝土分区抗硫酸盐侵蚀性能研究[J/OL]. 西南交通大学学报, 2024: 1-10 (2024-07-04) [2025-02-08]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240702006&dbname=CJFD&dbcode=CJFQ. LI F H, HUANG S N, XIAO S, et al. Study on sulfate resistance of concrete partition under high temperature-dry-wet cycle[J/OL]. Journal of Southwest Jiaotong University, 2024: 1-10 (2024-07-04) [2025-02-08]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=XNJT20240702006&dbname=CJFD&dbcode=CJFQ (in Chinese). [19] KANAUJIA P, BANERJEE R, et al. The effect of sulfate attack on physical properties of concrete[J]. International Journal of Recent Technology and Engineering (IJRTE), 2021, 10(2): 21-27. [20] ZOU D J, ZHANG M, QIN S S, et al. Mechanistic insights into two-stage expansion of concrete under external sulfate attack[J]. Construction and Building Materials, 2024, 446: 138027. [21] GUO Z H, HOU P K, XU Z H, et al. Sulfate attack resistance of tricalcium silicate modified with nano-silica and supplementary cementitious materials[J]. Construction and Building Materials, 2022, 321: 126332. [22] 宋 慧. 硫酸盐侵蚀条件下混凝土损伤演化机理及其内膨胀力模型[D]. 宁波: 宁波大学, 2011. SONG H. Mechanism of concrete damage evolution under sulfate erosion conditions and its internal expansion force model[D]. Ningbo: Ningbo University, 2011 (in Chinese). [23] YAO Y Z, LIU C, LIU H W, et al. Deterioration mechanism understanding of recycled powder concrete under coupled sulfate attack and freeze-thaw cycles[J]. Construction and Building Materials, 2023, 388: 131718. [24] 于连平, 郭保林, 夏 雨, 等. 混凝土氯离子和硫酸盐侵蚀破坏机理研究进展[J]. 混凝土世界, 2024(4): 84-91. YU L P, GUO B L, XIA Y, et al. Research progress on the failure modes and degradation mechanisms of chloride and sulfate corrosion in concrete[J]. China Concrete, 2024(4): 84-91 (in Chinese). |