[1] 吕邦成, 郭丽萍, 丁 聪, 等. 高延性地质聚合物复合材料性能及微结构研究进展[J]. 材料导报, 2023, 37(10): 230-240. LYU B C, GUO L P, DING C, et al. A review on performance and microstructure of high ductility geopolymer composites[J]. Materials Reports, 2023, 37(10): 230-240 (in Chinese). [2] 沙 东, 王宝民, 潘宝峰, 等. 地质聚合物强化增韧方法研究综述[J]. 复合材料学报, 2024, 41(3): 1215-1225. SHA D, WANG B M, PAN B F, et al. A review on reinforcing and toughening methods of geopolymers[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1215-1225 (in Chinese). [3] WANG C Q, ZHANG Z Y, LIU X, et al. Elucidating the role of recycled concrete aggregate in ductile engineered geopolymer composites: effects of recycled concrete aggregate content and size[J]. Journal of Building Engineering, 2024, 95: 110150. [4] WU J Q, LI B, CHEN Y T, et al. Investigation on the roles of glass sand in sustainable engineered geopolymer composites[J]. Construction and Building Materials, 2023, 363: 129576. [5] MA Z M, SHEN J X, WANG C Q, et al. Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate[J]. Cement and Concrete Composites, 2022, 132: 104629. [6] WANG S, LI V C. Engineered cementitious composites with high-volume fly ash[J]. ACI Materials Journal, 2007, 104(3): 233-241. [7] LAO J C, MA R Y, XU L Y, et al. Fly ash-dominated high-strength engineered/strain-hardening geopolymer composites (HS-EGC/SHGC): influence of alkalinity and environmental assessment[J]. Journal of Cleaner Production, 2024, 447: 141182. [8] 苏 骏, 钟子龙, 蔡雅琼, 等. 基于地聚物骨料的高延性纤维增强水泥基复合材料力学性能与拉伸本构模型[J]. 复合材料学报, 2024, 41(11): 6122-6137. SU J, ZHONG Z L, CAI Y Q, et al. Mechanical properties and tensile constitutive model of engineered cementitious composites based on geopolymer aggregates[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6122-6137 (in Chinese). [9] LAO J C, HUANG B T, XU L Y, et al. Seawater sea-sand engineered geopolymer composites (EGC) with high strength and high ductility[J]. Cement and Concrete Composites, 2023, 138: 104998. [10] LYU B C, GUO L P, FEI X P, et al. Preparation and properties of green high ductility geopolymer composites incorporating recycled fine brick aggregate[J]. Cement and Concrete Composites, 2023, 139: 105054. [11] 刘雨姗, 庞建勇, 姚韦靖. 页岩陶粒轻骨料混凝土高温后蠕变特性[J]. 建筑材料学报, 2021, 24(5): 1096-1104. LIU Y S, PANG J Y, YAO W J. Creep behavior of shale ceramsite lightweight aggregate concrete exposed to high temperature[J]. Journal of Building Materials, 2021, 24(5): 1096-1104 (in Chinese). [12] YANG J H, YANG Y P, WU X G, et al. Effect of initial temperature damage on the static and fatigue performance of all-lightweight shale ceramsite concrete[J]. Construction and Building Materials, 2024, 450: 138577. [13] CHENG Z J, WANG Z, LIU Z Z, et al. Multiple impact dynamic compression properties of lightweight engineered geopolymer composites containing ceramsite under different initial impact damages[J]. Construction and Building Materials, 2024, 436: 136807. [14] XIE K, CHENG Z J, LI F P, et al. Synergistic effects of temperature and strain rate on the dynamic mechanical behavior of lightweight engineered geopolymer composites containing ceramsite (LW-EGC)[J]. Construction and Building Materials, 2024, 457: 139387. [15] 李培鹏, 肖友福, 曹柏菘. 聚丙烯纤维页岩陶粒地聚物砂浆高温后力学性能[J]. 武汉理工大学学报, 2023, 45(8): 117-124. LI P P, XIAO Y F, CAO B S. Mechanical properties of geopolymer mortar with polypropylene fiber and shale ceramsite after high temperature[J]. Journal of Wuhan University of Technology, 2023, 45(8): 117-124 (in Chinese). [16] CHENG Z J, GUO T D, WANG C Y, et al. Effect of different ceramsite types on the compressive performance of lightweight engineered geopolymer composites (LW-EGC) exposed to high temperatures[J]. Journal of Building Engineering, 2024, 97: 110850. [17] 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021 (in Chinese). [18] 工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社. 2018. Ministry of Industry and Information Technology of the People's Republic of China. Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites: JC/T 2461—2018[S]. Beijing: China Building Materials Press, 2018 (in Chinese). [19] ZHANG Y T, SUN X W. Synergistic effects of nano-silica and fly ash on the mechanical properties and durability of internal-cured concrete incorporating artificial shale ceramsite[J]. Journal of Building Engineering, 2023, 66: 105905. [20] FU C S, GUO R X, LIN Z W, et al. Effect of nanosilica and silica fume on the mechanical properties and microstructure of lightweight engineered cementitious composites[J]. Construction and Building Materials, 2021, 298: 123788. [21] 李志辉. 超高延性水泥基复合材料(ECC): 面向可持续和韧性基础设施的可弯曲混凝土[M]. 张亚梅, 等译. 北京: 科学出版社, 2022: 74-75. LI Z H. Engineered cementitious composites (ECC): bendable concrete for sustainable and resilient infrastructure[M]. ZHANG Y M, et al. Transl. Beijing: Science Press, 2022: 74-75 (in Chinese). [22] XU L Y, HUANG B T, LI V C, et al. High-strength high-ductility engineered/strain-hardening cementitious composites (ECC/SHCC) incorporating geopolymer fine aggregates[J]. Cement and Concrete Composites, 2022, 125: 104296. |