[1] ZARONE F, DI MAURO M I, AUSIELLO P, et al. Current status on lithium disilicate and zirconia: a narrative review[J]. BMC Oral Health, 2019, 19(1): 134. [2] KELLY J R, DENRY I. Stabilized zirconia as a structural ceramic: an overview[J]. Dental Materials, 2008, 24(3): 289-298. [3] JI S H, DA SOL KIM, PARK M S, et al. Development of multicolor 3D-printed 3Y-ZrO2 sintered bodies by optimizing rheological properties of UV-curable high-content ceramic nanocomposites[J]. Materials & Design, 2021, 209: 109981. [4] SOLÍS N W, PERETYAGIN P, TORRECILLAS R, et al. Electrically conductor black zirconia ceramic by SPS using graphene oxide[J]. Journal of Electroceramics, 2017, 38(1): 119-124. [5] MAHMOOD Q, AFZAL A, SIDDIQI H M, et al. Sol-gel synthesis of tetragonal ZrO2 nanoparticles stabilized by crystallite size and oxygen vacancies[J]. Journal of Sol-Gel Science and Technology, 2013, 67(3): 670-674. [6] LV H D, BAO J X, QI S Y, et al. Optical and mechanical properties of purple zirconia ceramics[J]. Journal of Asian Ceramic Societies, 2019, 7(3): 306-311. [7] LIU G W, XIE Z P, WANG W, et al. Fabrication of ZrO2-CoAl2O4 composite by injection molding and solution infiltration[J]. International Journal of Applied Ceramic Technology, 2011, 8(6): 1344-1352. [8] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. [9] ZHANG X P, WU X, SHI J. Additive manufacturing of zirconia ceramics: a state-of-the-art review[J]. Journal of Materials Research and Technology, 2020, 9(4): 9029-9048. [10] SCHWENTENWEIN M, HOMA J. Additive manufacturing of dense alumina ceramics[J]. International Journal of Applied Ceramic Technology, 2015, 12(1): 1-7. [11] WANG L, YAO L, TANG W Z, et al. Effect of Fe2O3 doping on color and mechanical properties of dental 3Y-TZP ceramics fabricated by stereolithography-based additive manufacturing[J]. Ceramics International, 2023, 49(8): 12105-12115. [12] RASAKI S A, XIONG D Y, XIONG S F, et al. Photopolymerization-based additive manufacturing of ceramics: a systematic review[J]. Journal of Advanced Ceramics, 2021, 10(3): 442-471. [13] KIM I, KIM S, ANDREU A, et al. Influence of dispersant concentration toward enhancing printing precision and surface quality of vat photopolymerization 3D printed ceramics[J]. Additive Manufacturing, 2022, 52: 102659. [14] OEZKAN B, SAMENI F, KARMEL S, et al. A systematic study of vat-polymerization binders with potential use in the ceramic suspension 3D printing[J]. Additive Manufacturing, 2021, 47: 102225. [15] BISHOP T E, DESOTECH D. Multiple photoinitiators for improved performance[C]. Chicago, Illinois, USA: Radtech International UV and EB Curing Technology Expo & Conference (RadTech 2008) Part 2, 2008: 4-7. [16] ZHOU S X, LIU G Z, WANG C S, et al. Thermal debinding for stereolithography additive manufacturing of advanced ceramic parts: a comprehensive review[J]. Materials & Design, 2024, 238: 112632. [17] 武振飞, 王跃超, 陆丽芳, 等. 无压烧结氮化硅陶瓷的物理性能研究[J]. 硅酸盐通报, 2022, 41(5): 1782-1787. WU Z F, WANG Y C, LU L F, et al. Physical properties of silicon nitride ceramics by pressureless sintering[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1782-1787 (in Chinese). [18] CHANG J J, ZOU B, WANG X F, et al. Preparation, characterization and coloring mechanism of 3D printed colorful ZrO2 ceramics parts[J]. Materials Today Communications, 2022, 33: 104935. [19] TANG Y F, WU C, SONG Y, et al. Effects of colouration mechanism and stability of CoAl2O4 ceramic pigments sintered on substrates[J]. Ceramics International, 2018, 44(1): 1019-1025. |