[1] 李金雪, 石 峰, 崔树强. 我国建筑垃圾产生量的时空特征分析[J]. 科学与管理, 2015, 35(5): 50-56. LI J X, SHI F, CUI S Q. Analysis on the construction waste production in time-apatial perspective[J]. Science and Management, 2015, 35(5): 50-56 (in Chinese). [2] 郝粼波. 碳达峰、碳中和目标下建筑垃圾处理领域的发展思考[J]. 中国环保产业, 2022(4): 41-44. HAO L B. Thinking on the development of construction waste treatment sector under the goals of emission peak and carbon neutrality[J]. China Environmental Protection Industry, 2022(4): 41-44 (in Chinese). [3] 胡 晴, 穆凯旋, 姚志伟. 建筑垃圾处理关键设备选型分析[J]. 环保科技, 2022, 28(2): 45-51. HU Q, MU K X, YAO Z W. Selection and analysis of key equipment for construction waste disposal[J]. Environmental Protection and Technology, 2022, 28(2): 45-51 (in Chinese). [4] 中华人民共和国住房和城乡建设部. 建筑垃圾处理技术标准: CJJ/T 134—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for construction waste treatment: CJJ/T 134—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [5] 董 浩, 曾 波, 唐 飞, 等. 建筑垃圾资源化处置技术[J]. 建筑技术, 2021, 52(7): 805-809. DONG H, ZENG B, TANG F, et al. Resourceful disposal technology of construction waste[J]. Architecture Technology, 2021, 52(7): 805-809 (in Chinese). [6] 张军辉, 丁 乐, 张安顺. 建筑垃圾再生料在路基工程中的应用综述[J]. 中国公路学报, 2021, 34(10): 135-154. ZHANG J H, DING L, ZHANG A S. Application of recycled aggregates from construction and demoliton waste in subgrade engineering: a review[J]. China Journal of Highway and Transport, 2021, 34(10): 135-154 (in Chinese). [7] ISLAM R, NAZIFA T H, YUNIARTO A, et al. An empirical study of construction and demolition waste generation and implication of recycling[J]. Waste Management, 2019, 95: 10-21. [8] AKHTAR A, SARMAH A K. Construction and demolition waste generation and properties of recycled aggregate concrete: a global perspective[J]. Journal of Cleaner Production, 2018, 186: 262-281. [9] 张戴新月, 刘 扬, 高思岩. 基于多特征组合的建筑垃圾分类方法[J]. 测绘通报, 2024(6): 59-64. ZHANG D X Y, LIU Y, GAO S Y. Construction waste classification method based on multiple feature combination[J]. Bulletin of Surveying and Mapping, 2024(6): 59-64 (in Chinese). [10] 董文红, 石津金, 赵 雯. 建筑垃圾分离渣土在道路工程中的应用研究[J]. 山西建筑, 2022, 48(14): 102-105+110. DONG W H, SHI J J, ZHAO W. Application research on separation sediment of construction waste in road engineering[J]. Shanxi Architecture, 2022, 48(14): 102-105+110 (in Chinese). [11] 薛振华, 齐红军, 樊兴华. 建筑垃圾分离渣土路用性能研究[J]. 环境科学与管理, 2020, 45(7): 83-87. XUE Z H, QI H J, FAN X H. Performance of pavements made of residue soil separated from construction waste[J]. Environmental Science and Management, 2020, 45(7): 83-87 (in Chinese). [12] 邱军付, 张瑞峰, 章银祥, 等. 建筑垃圾分离渣土热活化研究及其在盾构注浆料中的应用[J]. 新型建筑材料, 2024, 51(3): 1-5+28. QIU J F, ZHANG R F, ZHANG Y X, et al. Thermally activated construction waste separation residue and its application in shield grouting mortar[J]. New Building Materials, 2024, 51(3): 1-5+28 (in Chinese). [13] WU H X, XU J G, YANG D Y, et al. Utilizing thermal activation treatment to improve the properties of waste cementitious powder and its newmade cementitious materials[J]. Journal of Cleaner Production, 2021, 322: 129074. [14] 张 平, 古龙龙, 王 琴, 等. 激发再生微粉活性的方法研究[J]. 混凝土与水泥制品, 2019(2): 90-93. ZHANG P, GU L L, WANG Q, et al. Study on the method of stimulating the activity of regenerated micro powder[J]. China Concrete and Cement Products, 2019(2): 90-93 (in Chinese). [15] 张 倩, 肖其远. 粉煤灰基地聚物水泥胶凝材料的早期工作性能[J]. 材料科学与工程学报, 2024, 42(5): 850-857+874. ZHANG Q, XIAO Q Y. Early workability performance of fly ash-based geopolymer cement binder[J]. Journal of Materials Science and Engineering, 2024, 42(5): 850-857+874 (in Chinese). [16] 张金龙, 唐孟雄, 衷从浩, 等. 纳米C-S-H晶核早强剂对水泥早期水化的影响[J]. 硅酸盐通报, 2025, 44(1): 21-30. ZHANG J L, TANG M X, ZHONG C H, et al. Effect of nano-C-S-H seeds early-strength agent on early hydration of cement[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(1): 21-30 (in Chinese). [17] LI X S, SHUI Z H, YU R, et al. Magnesium induced hydration kinetics of ultra-high performance concrete (UHPC) served in marine environment: experiments and modelling[J]. Construction and Building Materials, 2019, 224: 1056-1068. [18] MISHRA G, WARDA A, SHAH S P. Carbon sequestration in graphene oxide modified cementitious system[J]. Journal of Building Engineering, 2022, 62: 105356. [19] 王 冲, 张 聪, 刘俊超, 等. 纳米CaCO3对硅酸盐水泥水化特性的影响[J]. 硅酸盐通报, 2016, 35(3): 824-830. WANG C, ZHANG C, LIU J C, et al. Influence of nano-CaCO3 on hydration characteristic of Portland cement[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3): 824-830 (in Chinese). [20] 张雅婷, 朱兴一. 纳米增强蚀刻粉煤灰漂珠混凝土的力学性能与微观结构[J]. 复合材料学报, 2025, 42(4): 2023-2033. ZHANG Y T, ZHU X Y. Mechanical properties and microstructure of nano enhanced etched fly ash floating bead concrete[J]. Journal of Composite Materials, 2025, 42(4): 2023-2033 (in Chinese). [21] 王 琴, 张瑞峰, 郭志翔, 等. 产地来源和陈化方式对石灰结构和性能的影响[J]. 硅酸盐通报, 2023, 42(7): 2361-2371. WANG Q, ZHANG R F, GUO Z X, et al. Influences of origin and aging ways on structure and properties of lime[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2361-2371 (in Chinese). [22] 蒋久信, 吴 月, 何 瑶, 等. 亚稳态球霰石相碳酸钙的调控制备进展[J]. 无机材料学报, 2017, 32(7): 681-690. JIANG J X, WU Y, HE Y, et al. Progress in tuning of metastable vaterite calcium carbonate[J]. Journal of Inorganic Materials, 2017, 32(7): 681-690 (in Chinese). [23] 佟 钰, 赵 立, 李宛鸿, 等. 自石灰石矿粉中直接提取CaCO3晶须的碳化-分解法研究[J]. 材料导报, 2017, 31(16): 134-137+155. TONG Y, ZHAO L, LI W H, et al. Direct extraction of CaCO3 whiskers from limestone powders by a combined method of carbonation and thermal decomposition[J]. Materials Review, 2017, 31(16): 134-137+155 (in Chinese). [24] 常 钧, 房延凤, 尚小朋, 等. 加速碳化对水化硅酸钙显微结构的影响[J]. 硅酸盐学报, 2015, 43(8): 1055-1060. CHANG J, FANG Y F, SHANG X P, et al. Effect of accelerated carbonation on microstructure of calcium silicate hydrate[J]. Journal of the Chinese Ceramic Society, 2015, 43(8): 1055-1060 (in Chinese). [25] 钱 玲, 吴玉琪, 吕功煊, 等. 水盐冻融条件下莫高窟砂砾岩晶相蚀变特征研究[J]. 文物保护与考古科学, 2025, 37(1): 110-121. QIAN L, WU Y Q, LYU G X, et al. Study on the characteristics of crystal phase alteration of gravel from Mogao Grottoes in the brine solution under freeze-thaw conditions[J]. Sciences of Conservation and Archaeology, 2025, 37(1): 110-121 (in Chinese). [26] 田海山, 刘立新, 孙志明, 等. 西藏班戈湖水菱镁的矿热分解特性[J]. 硅酸盐学报, 2017, 45(2): 317-322. TIAN H S, LIU L X, SUN Z M, et al. Thermal decomposition characteristics of hydromagnesite from Bangor Lake in Tibet[J]. Journal of the Chinese Ceramic Society, 2017, 45(2): 317-322 (in Chinese). [27] 李昱蓓, 刘松辉, 朱建平, 等. 电石渣制备球霰石碳酸钙的工艺及机理[J]. 建筑材料学报, 2023, 26(8): 939-948. LI Y B, LIU S H, ZHU J P, et al. Process and mechanism of vaterite calcium carbonate preparation from calcium carbide slag[J]. Journal of Building Materials, 2023, 26(8): 939-948 (in Chinese). [28] REHMAN U U, SAHAR K U, CHERNIUSHOK O, et al. Tailoring thermoelectric properties of ALD grown ZnO thin films: effect of Al/Mg doping and post-annealing treatment[J]. Materials Chemistry and Physics, 2025, 333: 130344. [29] JANSEN D, SPIES A, NEUBAUER J, et al. Studies on the early hydration of two modifications of ye’elimite with gypsum[J]. Cement and Concrete Research, 2017, 91: 106-116. [30] CUESTA A, DE LA TORRE A G, LOSILLA E R, et al. Structure, atomistic simulations, and phase transition of stoichiometric yeelimite[J]. Chemistry of Materials, 2013, 25(9): 1680-1687. [31] 崔莹莹, 何健辉, 吕民望, 等. 可完全循环水泥砂浆配料制备贝利特水泥熟料的性能研究[J]. 硅酸盐通报, 2024, 43(9): 3348-3358. CUI Y Y, HE J H, LYU M W, et al. Performance of belite cement clinker from completely recyclable cement mortars[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3348-3358 (in Chinese). [32] 原 健, 王 琴, 曾凡超, 等. 不同温度下矿物掺合料对喷射混凝土水化行为及力学性能的影响[J]. 硅酸盐通报, 2024, 43(2): 407-417. YUAN J, WANG Q, ZENG F C, et al. Effect of mineral admixture on hydration behavior and mechanical properties of shotcrete at different temperatures[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 407-417 (in Chinese). [33] HASHEM A A, MAHMOUD S A, GEIOUSHY R A, et al. A green synthesis of calcium silicate nanopowders from silica fume and marble sawing dust by a microwave irradiation-assisted route[J]. New Journal of Chemistry, 2021, 45(28): 12426-12434. [34] QIN Y, NIU G H, WANG X, et al. Status of CO2 conversion using microwave plasma[J]. Journal of CO2 Utilization, 2018, 28: 283-291. [35] 朱新平, 何 倍, 汤宇祺, 等. 水化硅酸钙微纳结构及超低温稳定性研究进展[J]. 建筑材料学报, 2024, 27(12): 1112-1121+5. ZHU X P, HE B, TANG Y Q, et al. Research progress on micro/nano-structure and cryogenic stability of calcium-silicate-hydrate[J]. Journal of Building Materials, 2024, 27(12): 1112-1121+5 (in Chinese). [36] 范 炜, 刘国超, 陈龙辉, 等. 玉米秸秆灰柠檬酸改性处理对水泥基材料主要理化性能的影响[J]. 复合材料学报, 2024, 41(12): 6671-6680. FAN W, LIU G C, CHEN L H, et al. Effects of corn straw ash citric acid modification treatment on the main physicochemical properties of cement-based materials[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6671-6680 (in Chinese). [37] 刘勇兵, 刘世杰, 曹宇浩, 等. 基于TG-FTIR的水泥生料在N2气氛下热分解动力学研究[J]. 硅酸盐通报, 2020, 39(9): 2762-2768+2776. LIU Y B, LIU S J, CAO Y H, et al. Pyrolysis kinetic analysis of cement raw meal in N2 atmosphere based on TG-FTIR method[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2762-2768+2776 (in Chinese). [38] ÁVILA I, CRNKOVIC P M, MILIOLI F E, et al. Thermal decomposition kinetics of Brazilian limestones: effect of CO2 partial pressure[J]. Environmental Technology, 2012, 33(10): 1175-1182. [39] TIAN L N, CHEN H P, CHEN Z H, et al. A study of non-isothermal kinetics of limestone decomposition in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres[J]. Journal of Thermal Analysis and Calorimetry, 2014, 115(1): 45-53. [40] 齐国栋, 王栋民, 朱宇华, 等. 明长城大庄科段古灰浆成分分析及性能演变[J]. 硅酸盐学报, 2022, 50(8): 2163-2172. QI G D, WANG D M, ZHU Y H, et al. Composition analysis and performance evolution of ancient mortar in Dazhuangke section of the Ming Great Wall[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2163-2172 (in Chinese). [41] 刘慧婷, 李 妍, 于永金, 等. 化学组分和温度对水化硅铝酸钙凝胶结构及力学性能影响的分子动力学研究[J]. 中国石油大学学报(自然科学版), 2025, 49(1): 211-219. LIU H T, LI Y, YU Y J, et al. Influence of chemical composition and temperature on structural and mechanical properties of C-A-S-H with molecular dynamics[J]. Journal of China University of Petroleum (Edition of Natural Science), 2025, 49(1): 211-219 (in Chinese). [42] 张 宇,左晓宝,刘婧涵.温度及软水环境对铝酸盐水泥基材料的影响[J/OL]. 建筑材料学报, 1-11(2025-01-06)[2025-05-22]. http://kns.cnki.net/kcms/detail/31.1764.TU.20250106.1547.008.html. ZHANG Y, ZUO X B, LIU J H. The Influence of temperature and soft water environment on aluminate saltwater mud based materials[J/OL]. Journal of Building Materials, 1-11 (2025-01-06) [2025-05-22]. http://kns.cnki.net/kcms/detail/31.1764.TU.20250106.1547.008.html (in Chinese). [43] 吴泽媚, 崔鑫溦, 郑新颜, 等. 早期受冻混凝土及其防冻技术研究进展[J]. 硅酸盐学报, 2025, 53(2): 471-494. WU Z M, CUI X W, ZHENG X Y, et al. Research progress of early-age frozen concrete and its protection techniques[J]. Journal of the Chinese Ceramic Society, 2025, 53(2): 471-494 (in Chinese). [44] 康晓明, 李 滢, 樊耀虎. 不同激发方式对再生微粉性能的影响研究[J]. 硅酸盐通报, 2019, 38(4): 1135-1139. KANG X M, LI Y, FAN Y H. Effect of different excitation methods on the properties of recycled concrete powder[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 1135-1139 (in Chinese). [45] 包 明. 建筑垃圾粉活化对硫铝酸水泥基材料的影响[J]. 硅酸盐通报, 2018, 37(12): 3901-3905. BAO M. Effect of construction waste powder on the hydration and properties of calcium sulfoaluminate cement based materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3901-3905 (in Chinese). [46] FLOREA M V A, NING Z, BROUWERS H J H. Activation of liberated concrete fines and their application in mortars[J]. Construction and Building Materials, 2014, 50: 1-12. [47] 张 琰, 黄业胜, 刘佳龙, 等. 硫铝酸盐水泥对硅酸盐水泥早期水化和力学性能的影响[J]. 硅酸盐通报, 2024, 43(10): 3552-3560+3594. ZHANG Y, HUANG Y S, LIU J L, et al. Effect of sulphoaluminate cement on early hydration and mechanical properties of Portland cement[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(10): 3552-3560+3594 (in Chinese). [48] 闫玉蓉, 方永浩, 龚泳帆, 等. 碱激发再生水泥砂浆粉胶凝材料的强度与显微结构[J]. 材料导报, 2013, 27(24): 117-120. YAN Y R, FANG Y H, GONG Y F, et al. Strength and microstructure of alkali-activated recycled cement mortar powder cement[J]. Materials Review, 2013, 27(24): 117-120 (in Chinese). |