欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (6): 2328-2336.DOI: 10.16552/j.cnki.issn1001-1625.2024.1376

• 耐火材料 • 上一篇    下一篇

AOD炉风枪区镁钙耐火材料的损毁机理

裴强1, 鄢文1, 宋金文1, 刘修毅1, 齐江涛2, 李院高3, 石会营3   

  1. 1.武汉科技大学,省部共建耐火材料与冶金国家重点实验室,武汉 430081;
    2.山西太钢不锈钢股份有限公司制造部,太原 030003;
    3.山西禄纬堡太钢耐火材料有限公司,太原 030100
  • 收稿日期:2024-11-13 修订日期:2024-12-09 发布日期:2025-06-27
  • 通信作者: 鄢 文,博士,教授。E-mail:yanwen@wust.edu.cn
  • 作者简介:裴 强(2000—),男,硕士研究生。主要从事镁钙耐火材料的研究。E-mail:1797259949@qq.com
  • 基金资助:
    国家自然科学基金(U21A2058)

Damage Mechanism of MgO-CaO Refractory for Air Gun Area of AOD Furnace

PEI Qiang1, YAN Wen1, SONG Jinwen1, LIU Xiuyi1, QI Jiangtao2, LI Yuangao3, SHI Huiying3   

  1. 1. The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;
    2. Manufacturing Department of Shanxi Taigang Stainless Steel Co., Ltd., Taiyuan 030003, China;
    3. Shanxi Luweibao Taigang Refractories Co., Ltd., Taiyuan 030100, China
  • Received:2024-11-13 Revised:2024-12-09 Online:2025-06-27

摘要: 通过对材料与熔渣界面反应及其热应力分布的分析,探究了氩氧精炼炉(AOD炉)风枪区镁钙耐火材料的损毁机理。在镁钙耐火材料与熔渣界面反应研究中发现,熔渣优先与材料中的CaO反应形成硅酸三钙(C3S)和硅酸二钙(C2S),而这两种产物向渣中的溶解速率远大于MgO和CaO,容易产生大量液相;在风枪区热应力分布研究中发现,在风枪区砖热面达到1 730 ℃且冷面平均温度为150 ℃时,冷气流的引入在风枪区镁钙耐火材料内形成了极大的温度梯度,使材料在距热面深度8 mm处产生了最大的热应力。综合界面反应与热应力分布的结果可以推断:风枪区镁钙耐火材料在高温服役过程中,距热面深度8 mm处承受最大的热应力,导致该区域易发生应力集中并产生裂纹;同时,熔渣与耐火材料界面反应生成的C3S和C2S迅速向熔渣中溶解,显著降低了材料的高温强度;在熔渣侵蚀和热应力的共同作用下,裂纹加速扩展并引发结构剥落,该过程在冶炼过程中循环发生,最终导致AOD炉风枪区镁钙耐火材料的损毁。

关键词: 镁钙耐火材料, 熔渣侵蚀, 热应力分布, 损毁机理, AOD炉

Abstract: Analyzing the interface reaction and thermal stress distribution between materials and slag, the damage mechanism of MgO-CaO refractory inthe air gun area of the argon oxygen decarburization furnace (AOD furnace) was investigated. The study of the interface reaction between MgO-CaO refractories and slag finds that the slag preferentially reacts with CaO in the material to form tricalcium silicate (C3S) and dicalcium silicate (C2S). Meanwhile, the dissolution rate of these two products into the slag is much larger than that of MgO and CaO, which is prone to producing liquid. The study of the thermal stress distribution in the air gun area finds that when the hot face of the air gun brick reaches 1 730 ℃ and the average temperature of the cold face is 150 ℃, the introduction of cold airflow creates a great temperature gradient within the MgO-CaO refractory in the air gun area. This causes the maximum thermo-mechanical stresses in the material at a depth of 8 mm from the hot surface. Based on the interface reaction and thermal stress distribution results, it can be inferred that the MgO-CaO refractory in the air gun area bears the maximum thermal stress at a distance of 8 mm from the hot surface during high-temperature service. This leads to stress concentration and crack formation in this area. At the same time, the C3S and C2S generated by the interface reaction between slag and refractory quickly dissolve into the slag, significantly reducing the high-temperature strength of the material. Under the combined action of slag erosion and thermal stress accelerate cracks, accelerating structural spalling, which occurs cyclically during the smelting process and ultimately damages MgO-CaO refractory in the air gun area of AOD furnace.

Key words: MgO-CaO refractory, slag erosion, thermal stress distribution, damage mechanism, AOD furnace

中图分类号: