[1] GHOSH A. Technological progress in dolomite refractory: a short review[J]. Steel & Metallurgy, 2021, 23(6): 34-38. [2] QIU G B, PENG B, LI X, et al. Properties of regenerated MgO-CaO refractory bricks: impurity of silicon dioxide[J]. Materials Research Innovations, 2015, 19(sup 2): S2-119-S2-124. [3] SHAHRAKI A, GHASEMI-KAHRIZSANGI S, NEMATI A. Performance improvement of MgO-CaO refractories by the addition of nano-sized Al2O3[J]. Materials Chemistry and Physics, 2017, 198: 354-359. [4] JIA T M, AN G Y, CHE S X, et al. Grain growing dynamics of MgO-CaO composite ceramics[J]. Acta Metallurgica Sinica (English Edition), 2000(6): 1155-1158. [5] 戴文斌, 于景坤. 纯净钢冶炼用耐火材料[J]. 材料与冶金学报, 2003, 2(1): 3-9. DAI W B, YU J K. Refractory for clean steel making[J]. Journal of Materials and Metallurgy, 2003, 2(1): 3-9 (in Chinese). [6] 李 楠, 匡加才. 碱性耐火材料脱磷作用的研究[J]. 耐火材料, 2000, 34(5): 249-251. LI N, KUANG J C. Dephosphorus of basic refractories[J]. Refractories, 2000, 34(5): 249-251 (in Chinese). [7] 程志旺, 许 勇. 不锈钢冶炼工艺技术[J]. 特钢技术, 2011, 17(1): 1-5. CHENG Z W, XU Y. Process technology of stainless steel smelting[J]. Special Steel Technology, 2011, 17(1): 1-5 (in Chinese). [8] 王明广. 不锈钢冶炼用镁钙质耐火材料研究[D]. 鞍山: 辽宁科技大学, 2012. WANG M G. Study on magnesia-calcium refractories for stainless steel smelting[D]. Anshan: University of Science and Technology Liaoning, 2012 (in Chinese). [9] 林育炼. 洁净钢生产技术的发展与耐火材料的相互关系[J]. 耐火材料, 2010, 44(5): 377-382. LIN Y L. Interrelation between clean steel technology development and refractories[J]. Refractories, 2010, 44(5): 377-382 (in Chinese). [10] 刘 浏. 不锈钢冶炼工艺与生产技术[J]. 河南冶金, 2010, 18(6): 1-5+9. LIU L. Stainless smelting process and production technology[J]. Henan Metallurgy, 2010, 18(6): 1-5+9 (in Chinese). [11] 李运平. 太钢不锈钢冶炼用耐火材料[J]. 耐火材料, 2012, 46(1): 74-76. LI Y P. Refractory for stainless steel smelting in TISCO[J]. Refractories, 2012, 46(1): 74-76 (in Chinese). [12] ALNAJJAR M, CHRISTIEN F, BOSCH C, et al. A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17-4 PH stainless steel[J]. Materials Science and Engineering: A, 2020, 785: 139363. [13] SHIMIZU K. Wear of refractories for AOD furnace[J]. Journal of the Technical Association of Refractories, Japan, 2001, 21(4): 258-263. [14] 郭家祺, 刘明生. AOD精炼不锈钢工艺发展[J]. 炼钢, 2002, 18(2): 52-58. GUO J Q, LIU M S. Evolution of AOD process for stainless steel refining[J]. Steelmaking, 2002, 18(2): 52-58 (in Chinese). [15] 张立辉. 浅谈提高AOD炉炉衬寿命的方法[J]. 现代制造技术与装备, 2012, 48(3): 39-40. ZHANG L H. Discussion on improving AOD furnace lining life methods[J]. Modern Manufacturing Technology and Equipment, 2012, 48(3): 39-40 (in Chinese). [16] 王建东, 葛昌纯, 邹林华, 等. AOD炉衬MgO-CaO砖的侵蚀机理[J]. 耐火材料, 2006, 40(3): 186-189. WANG J D, GE C C, ZOU L H, et al. Corrosion mechanism of MgO-CaO brick for AOD furnace[J]. Refractories, 2006, 40(3): 186-189 (in Chinese). [17] 郭红涛. AOD炉炉衬侵蚀分析方法的研究[D]. 长春: 长春工业大学, 2018. GUO H T. Study on erosion analysis method of AOD furnace lining[D]. Changchun: Changchun University of Technology, 2018 (in Chinese). [18] 江 欣. AOD炉用耐火材料的损毁[J]. 国外耐火材料, 2001, 26(6): 27-31. JIANG X. Wear of refractories for AOD furnace[J]. Foreign Refractories, 2001, 26(6): 27-31 (in Chinese). [19] 陈欣雨, 黄 奥, 李昇昊, 等. 电熔镁砂在CaO-Al2O3-SiO2熔渣中的溶解行为[J]. 硅酸盐学报, 2023, 51(3): 610-618. CHEN X Y, HUANG A, LI S H, et al. Dissolution behavior of fused magnesia in CaO-Al2O3-SiO2 slags[J]. Journal of the Chinese Ceramic Society, 2023, 51(3): 610-618 (in Chinese). [20] 梁义兵, 李运平. 镁钙砖的抗渣性研究[J]. 耐火材料, 2009, 43(4): 263-266. LIANG Y B, LI Y P. Slag resistance of MgO-CaO bricks[J]. Refractories, 2009, 43(4): 263-266 (in Chinese). [21] 冯海霞, 柳 军. VOD炉用烧成镁钙砖的抗渣侵蚀机制分析[J]. 耐火材料, 2015, 49(6): 452-453+457. FENG H X, LIU J. Analysis of the anti-slag erosion mechanism of fired magnesia calcium bricks for VOD furnaces[J]. Refractories, 2015, 49(6): 452-453+457 (in Chinese). [22] XU T T, XU Y B, LI Y W, et al. Corrosion mechanisms of magnesia-chrome refractories in copper slag and concurrent formation of hexavalent chromium[J]. Journal of Alloys and Compounds, 2019, 786: 306-313. [23] 王恭一, 赵惠忠, 黄日清, 等. AOD炉渣对镁钙质耐火材料的侵蚀机理[J]. 硅酸盐通报, 2023, 42(4): 1496-1505. WANG G Y, ZHAO H Z, HUANG R Q, et al. Corrosion mechanism of AOD slag on magnesia calcium refractories[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1496-1505 (in Chinese). [24] 陈景锋, 杜晓建, 常国栋, 等. AOD炉镁钙砖炉衬的侵蚀机理及改进措施[C]//中国钢铁年会. 2013: 1-4. CHENG J F, DU X J, CHANG G D, et al. Wear mechanism and improvements on AOD refractory with dolomite bricks[C]//China Steel Annual Conference. 2013: 1-4 (in Chinese). [25] LIU H, AN Y, WANG Z F, et al. Enhanced corrosion resistance of magnesia-chrome refractories impregnated with zirconia sol[J]. Ceramics International, 2023, 49(2): 2478-2485. [26] MORIYAMA E, EJIRI K, TERASHIMA T, el at. Improvement of the spalling resistance of dolomite bricks[J]. Journal of the Technical Association of Refractories, Japan, 2004, 24(3): 181-185. [27] 蒋 晨. 镁钙材料-炉渣界面反应行为研究[D]. 鞍山: 辽宁科技大学, 2021. JIANG C. Study on interface reaction behavior between magnesium-calcium material and slag[D]. Anshan: University of Science and Technology Liaoning, 2021 (in Chinese). [28] WEI J W, MIAO Z, LI Y Y, et al. Chemical attack of Al2O3-MgAl2O4 refractory castables in the non-slag-tapping side of refining ladle[J]. Ceramics International, 2022, 48(12): 16832-16838. [29] YAN W, WU G Y, MA S B, et al. Energy efficient lightweight periclase-magnesium alumina spinel castables containing porous aggregates for the working lining of steel ladles[J]. Journal of the European Ceramic Society, 2018, 38(12): 4276-4282. [30] 李院高, 宋金文, 鄢 文, 等. 高硅渣对不同废砖含量的镁钙耐火材料基质熔蚀行为[J]. 硅酸盐学报, 2025, 53(1): 114-124. LI Y G, SONG J W, YAN W, et al. Erosion behavior of high-silica slag on MgO-CaO based refractories containing recycled brick materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(1): 114-124 (in Chinese). |