[1] ZENG H J, SUN Y C. The parametered modeling technology study for the civil aircraft engine fan blade[J].Multidiscipline Modeling in Materials and Structures, 2012, 8(1): 96-104. [2] HUNT D M, CARVALHO L S, COWING J A, et al. Evolution and spectral tuning of visual pigments in birds and mammals[J].Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1531): 2941-2955. [3] MARTIN G R. Understanding bird collisions with man-made objects: a sensory ecology approach[J].Ibis, 2011, 153(2): 239-254. [4] MARTIN G R. Through birds' eyes: insights into avian sensory ecology[J].Journal of Ornithology, 2012, 153(1): 23-48. [5] MACHTANS C S, WEDELES C H R, BAYNE E M. A first estimate for Canada of the number of birds killed by colliding with building windows[J].Avian Conservation and Ecology, 2013, 8(2): art6. [6] GELB Y, DELACRETAZ N. Windows and vegetation: primary factors in Manhattan bird collisions[J].Northeastern Naturalist, 2009, 16(3): 455-470. [7] BORDEN W C, LOCKHART O M, JONES A W, et al. Seasonal, taxonomic, and local habitat components of bird-window collisions on an urban university campus in Cleveland, OH[J].Ohio Journal of Science, 2010, 110(3): 44-52. [8] SCHNEIDER R M, BARTON C M, ZIRKLE K W, et al. Year-round monitoring reveals prevalence of fatal bird-window collisions at the Virginia Tech Corporate Research Center[J].PeerJ, 2018, 6: e4562. [9] LOSS S R, WILL T, LOSS S S, et al. Bird-building collisions in the United States: estimates of annual mortality and species vulnerability[J].The Condor, 2014, 116(1): 8-23. [10] KLEM D. Bird-window collisions[J].The Wilson Journal of Ornithology, 1989, 101: 606-620. [11] KUMMER J A, BAYNE E M. Bird feeders and their effects on bird-window collisions at residential houses[J].Avian Conservation and Ecology, 2015, 10(2): art6. [12] VAN DOREN B M, WILLARD D E, HENNEN M, et al. Drivers of fatal bird collisions in an urban center[J].Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(24): e2101666118. [13] WINGER B M, WEEKS B C, FARNSWORTH A, et al. Nocturnal flight-calling behaviour predicts vulnerability to artificial light in migratory birds[J].Proceedings Biological Sciences, 2019, 286(1900): 20190364. [14] KAHLE L Q, FLANNERY M E, DUMBACHER J P. Bird-window collisions at a west-coast urban park museum: analyses of bird biology and window attributes from golden gate park, San francisco[J].PLoS One, 2016, 11(1): e0144600. [15] HAGER S B, COSENTINO B J, MCKAY K J, et al. Window area and development drive spatial variation in bird-window collisions in an urban landscape[J].PLoS One, 2013, 8(1): e53371. [16] LOSS S R, LI B V, HORN L C, et al. Citizen science to address the global issue of bird-window collisions[J].Frontiers in Ecology and the Environment, 2023, 21(9): 418-427. [17] YONG D L, HEIM W, CHOWDHURY S U, et al. The state of migratory landbirds in the East Asian flyway: distributions, threats, and conservation needs[J].Frontiers in Ecology and Evolution, 2021, 9: 613172. [18] YANG H, HUANG X J, THOMPSON J R, et al. Bird-friendly buildings for China's cities[J].Science, 2021, 374(6565): 268. [19] OCAMPO-PEÑUELA N, WINTON R S, WU C J, et al. Patterns of bird-window collisions inform mitigation on a university campus[J].PeerJ, 2016, 4: e1652. [20] SHEPPARD C D, PHILLIPS G. Bird-friendly building design[EB/OL].(2022-06-19)[2024-09-20].Bird-friendly-Building-Guide_2015.pdf (abcbirds.org). [21] CHURCH F, et al. Reducing bird collisions with buildings and building glass best practices[EB/OL].(2021-06-04)[2024-09-20].Reducing-bird-collisions-with-buildings.pdf (fws.gov). [22] SCHMID H, DOPPLER W, HETNEN D, et al. Bird-friendly building with glass and light[EB/OL].(2023-12-15)[2024-09-20].https://abcbirds.org/bird-friendly-building-design/. [23] RÖSSLER M, NEMETH E, BRUCKNER A. Glass pane markings to prevent bird-window collisions: less can be more[J].Biologia, 2015, 70(4): 535-541. [24] SHEPPARD C D. Evaluating the relative effectiveness of patterns on glass as deterrents of bird collisions with glass[J].Global Ecology and Conservation, 2019, 20: e00795. [25] GLASPRO. GlasPro鸟类友好型幕墙玻璃[J].装饰, 2023(3): 2. GLASPRO. GlasPro bird-friendly curtain wall glass[J].Art & Design, 2023(3): 2 (in Chinese). [26] 周泓崑, 宋 宇, 吕宜超, 等. UV吸收/反射材料在鸟类友好建筑玻璃领域中的研究[J].玻璃, 2023, 50(2): 56-62. ZHOU H K, SONG Y, LYU Y C, et al. Study on UV absorption/reflection materials in the field of bird-friendly building glass[J].Glass, 2023, 50(2): 56-62 (in Chinese). [27] SAITO E. Glazing for prevention bird from collision: Japan, JPH07289142A[P].1995-11-07. [28] CHOI J. Performance model for tempered anti-glare LCD cover glass[J].Journal of Mechanical Science and Technology, 2019, 33(10): 4951-4956. [29] SHAHARIAR H, JUR J S. Correlation of printing faults with the RF characteristics of coplanar waveguides (CPWs) printed on nonwoven textiles[J].Sensors and Actuators A: Physical, 2018, 273: 240-248. [30] WANG H Y, MA S H, ZHANG M L, et al. Effects of screen printing and sintering processing of front side silver grid line on the electrical performances of multi-crystalline silicon solar cells[J].Journal of Materials Science: Materials in Electronics, 2017, 28(16): 11934-11949. [31] STAROĞ A, DŁUGOSZ O, SZOSTAK A. Study of the influence of etching mixture components on the frosted glass effect[J].Journal of Non-Crystalline Solids, 2021, 554: 120583. [32] 葛盛卓, 张喜华, 陈小群, 等. 蒙砂粉熟化过程与蚀刻玻璃表面的研究[J].无机盐工业, 2022, 54(7): 91-97. GE S Z, ZHANG X H, CHEN X Q, et al. Study on aging process of masking powder and etching on glass surface[J].Inorganic Chemicals Industry, 2022, 54(7): 91-97 (in Chinese). [33] CHEN L, WANG Q K, CHEN W, et al. Investigation of a novel frosted glass with regular pit array texture[J].Journal of Materials Processing Technology, 2016, 238: 195-201. [34] 潘国治, 周 薇, 赵会峰, 等. HF侵蚀条件制备防眩玻璃及性能影响[J].玻璃搪瓷与眼镜, 2020, 48(1): 6-11. PAN G Z, ZHOU W, ZHAO H F, et al. Effect of HF erosion conditions on preparation and properties of anti-dazzle glass[J].Glass Enamel & Ophthalmic Optics, 2020, 48(1): 6-11 (in Chinese). [35] 李筱凡, 郝 霞, 王 琦, 等. 常温下对高铝玻璃的高透过防眩表面处理[J].硅酸盐学报, 2021, 49(5): 1000-1005. LI X F, HAO X, WANG Q, et al. Treatment for high-transmittance and anti-glare surface of high alminum glass at normal temperature[J].Journal of the Chinese Ceramic Society, 2021, 49(5): 1000-1005 (in Chinese). [36] ZHAO T, LEI Y J, WANG H, et al. Kinetic study on preparation of anti-glare and anti-reflective frosted glass by acid dissolving salt solution etching method[J].Ceramics International, 2022, 48(5): 6859-6866. [37] 孔 壮, 孙 勇, 黄永刚, 等. 喷砂工艺对光吸收层反射率的影响[J].广东化工, 2024, 51(17): 8-10. KONG Z, SUN Y, HUANG Y G, et al. Effects of sandblasting conditions on reflectivity of light absorption layer[J].Guangdong Chemical Industry, 2024, 51(17): 8-10 (in Chinese). [38] 林信平, 陈 戈, 杨清平, 等. 喷砂工艺对Y-TZP力学性能和表面粗糙度的影响[J].中国锰业, 2024, 42(1): 72-76. LIN X P, CHEN G, YANG Q P, et al. An effect of sandblasting process on mechanical properties and surface roughness of Y-TZP[J].China Manganese Industry, 2024, 42(1): 72-76 (in Chinese). [39] VALVERDE G B, COELHO P G, JANAL M N, et al. Surface characterisation and bonding of Y-TZP following non-thermal plasma treatment[J].Journal of Dentistry, 2013, 41(1): 51-59. [40] STRASSER T, PREIS V, BEHR M, et al. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment[J].Clinical Oral Investigations, 2018, 22(8): 2787-2797. [41] 杨桂祥, 王科研, 耿 平, 等. 防鸟撞建筑镀膜玻璃: CN217651123U[P].2022-10-25. YANG G X, WANG K Y, GENG P, et al. Anti-bird impact building coated glass: CN217651123U[P].2022-10-25 (in Chinese). [42] JENA S, TOKAS R B, SARKAR P, et al. Achieving omnidirectional photonic band gap in sputter deposited TiO2/SiO2 one dimensional photonic crystal[C]//AIP Conference Proceedings. Rome, Italy. AIP Publishing LLC, 2015, 1665: 060018. [43] 孙希鹏, 杜永超, 肖志斌. 空间三结砷化镓太阳电池用紫外反射盖片研究[J].电源技术, 2019, 43(9): 1509-1511+1535. SUN X P, DU Y C, XIAO Z B. Research of ultraviolet reflective coverglass for space triple junction gallium arsenide solar cells[J].Chinese Journal of Power Sources, 2019, 43(9): 1509-1511+1535 (in Chinese). [44] LEE I, GIM S, PARK J Y, et al. One-structure-based barrier film for simultaneous exclusion of water and ultraviolet light[J].Advanced Optical Materials, 2017, 5(3): 1600888. [45] DEY T. UV-reflecting sintered nano-TiO2 thin film on glass for anti-bird strike application[J].Surface Engineering, 2021, 37(6): 688-694. [46] KAIN B M, WADDOUP D M. Structural element, in particular pane element, having protection against bird strike and a process for producing such a structural element: US20220312758[P].2022-10-06. [47] GE J P, YIN Y D. Responsive photonic crystals[J].Angewandte Chemie International Edition, 2011, 50(7): 1492-1522. [48] SMIRNOV J R C, ITO M, CALVO M E, et al. Adaptable ultraviolet reflecting polymeric multilayer coatings of high refractive index contrast[J].Advanced Optical Materials, 2015, 3(11): 1633-1639. [49] BAILEY J, SHARP J S. Infrared dielectric mirrors based on thin film multilayers of polystyrene and polyvinylpyrrolidone[J].Journal of Polymer Science Part B: Polymer Physics, 2011, 49(10): 732-739. [50] COLODRERO S, OCAÑA M, MÍGUEZ H. Nanoparticle-based one-dimensional photonic crystals[J].Langmuir, 2008, 24(9): 4430-4434. [51] CASTRO SMIRNOV J R, CALVO M E, MÍGUEZ H. Selective UV reflecting mirrors based on nanoparticle multilayers[J].Advanced Functional Materials, 2013, 23(22): 2805-2811. [52] YUAN Y, CHEN Y, CHEN W L, et al. Preparation, durability and thermostability of hydrophobic antireflective coatings for solar glass covers[J].Solar Energy, 2015, 118: 222-231. [53] STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J].Journal of Colloid and Interface Science, 1968, 26(1): 62-69. [54] ZHANG X X, CAI S, YOU D, et al. Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings[J].Advanced Functional Materials, 2013, 23(35): 4361-4365. [55] YAMAGUCHI M, NAKAYAMA H, YAMADA K, et al. Ultralow refractive index coatings consisting of mesoporous silica nanoparticles[J].Optics Letters, 2009, 34(13): 2060-2062. [56] YUAN Q, ZHANG M L, WANG D Y, et al. Solution-processed one-dimensional photonic crystals based on hollow silica exhibiting high refractive index contrast[J].ACS Applied Materials & Interfaces, 2024, 16(22): 29141-29152. [57] ZHANG J L, XI S J, MAO G Y, et al. Robust and efficient UV-reflecting one-dimensional photonic crystals enabled by organic/inorganic nanocomposite thin films for photoprotection of transparent polymers[J].Journal of Materials Chemistry C, 2021, 9(12): 4223-4232. [58] NÚÑEZ-LOZANO R, PIMENTEL B, CASTRO-SMIRNOV J R, et al. Biocompatible films with tailored spectral response for prevention of DNA damage in skin cells[J].Advanced Healthcare Materials, 2015, 4(13): 1944-1948. |