硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (1): 151-168.DOI: 10.16552/j.cnki.issn1001-1625.2024.0862
郝龙龙1, 秦身钧1,2, 庞薇2, 李神勇2, 吕大炜3, 郑雪3, 侯佳佳2, 门长全2
收稿日期:
2024-07-23
修订日期:
2024-09-25
出版日期:
2025-01-15
发布日期:
2025-01-23
通信作者:
秦身钧,博士,教授。E-mail:qsjhbhd@163.com
作者简介:
郝龙龙(1998—),男,硕士研究生。主要从事煤基固废资源化利用方向的研究。E-mail:hl1632379132@163.com
基金资助:
HAO Longlong1, QIN Shenjun1,2, PANG Wei2, LI Shenyong2, LYU Dawei3, ZHENG Xue3, HOU Jiajia2, MEN Changquan2
Received:
2024-07-23
Revised:
2024-09-25
Published:
2025-01-15
Online:
2025-01-23
摘要: 粉煤灰作为大宗铝硅酸盐固体废物,在放置和资源化利用过程中,有害元素可能会迁移并对环境造成风险。本文综述了粉煤灰中有害元素的赋存状态,粉煤灰在放置、利用过程中有害元素的迁移及相关影响因素和环境风险评估方法。粉煤灰中的大部分有害元素主要以残渣态或铁锰氧化物态存在。在放置过程中,粉煤灰中有害元素的迁移受到元素地球化学性质、粒径和pH值等因素的影响,体现出不同的特征。在资源化利用过程中有害元素亦会表现出不同的迁移规律,如粉煤灰改良土壤过程中,有害元素性质不同时,它们会向表层土壤或深层土壤迁移,但随着时间的延长,均有向表层土壤迁移的倾向;在粉煤灰基功能材料制备中,金属有害元素主要迁移进入产品,而非金属有害元素主要迁移进入废液;在粉煤灰有价元素提取过程中,有害元素会迁移到废液、废渣和产品中,但具体细节目前尚缺少研究。最后对现有粉煤灰中有害元素环境风险相关标准与规范、环境风险评估方法进行了总结,并分析了存在的问题和提出了研究展望。
中图分类号:
郝龙龙, 秦身钧, 庞薇, 李神勇, 吕大炜, 郑雪, 侯佳佳, 门长全. 粉煤灰放置与利用过程中有害元素迁移规律及环境风险评估研究进展[J]. 硅酸盐通报, 2025, 44(1): 151-168.
HAO Longlong, QIN Shenjun, PANG Wei, LI Shenyong, LYU Dawei, ZHENG Xue, HOU Jiajia, MEN Changquan. Research Progress of Migration Law of Harmful Elements and Environmental Risk Assessment in Process of Coal Fly Ash Placement and Utilization[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(1): 151-168.
[1] 胡勤海, 张 辉, 白光辉, 等. 高铝粉煤灰精细化利用的研究进展[J]. 化工进展, 2011, 30(7): 1613-1617. HU Q H, ZHANG H, BAI G H, et al. Progress of utilization of fly ash with high concentration alumina[J]. Chemical Industry and Engineering Progress, 2011, 30(7): 1613-1617 (in Chinese). [2] 中华人民共和国国家发展和改革委员会,国家能源局. 能源生产和消费革命战略(2016—2030)[EB/OL]. (2016-12-29)[2024-07-23]. https://www.gov.cn/xinwen/2017-04/25/content_5230568.htm. National Development and Reform Commission, National Energy Administration. Energy production and consumption transition strategy (2016—2030)[EB/OL]. (2016-12-29)[2024-07-23]. https://www.gov.cn/xinwen/2017-04/25/content_5230568.htm (in Chinese). [3] KOUKOUZAS N, ZENG R, PERDIKATSIS V, et al. Mineralogy and geochemistry of Greek and Chinese coal fly ash[J]. Fuel, 2006, 85(16): 2301-2309. [4] 王建新, 李 晶, 赵仕宝, 等. 中国粉煤灰的资源化利用研究进展与前景[J]. 硅酸盐通报, 2018, 37(12): 3833-3841. WANG J X, LI J, ZHAO S B, et al. Research progress and prospect of resource utilization of fly ash in China[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 3833-3841 (in Chinese). [5] PRASAD B, MAITI D, SINGH K K K. Impact of fly ash placement in an abandoned opencast mine on surface and ground water quality: a case study[J]. Mine Water and the Environment, 2019, 38(1): 72-80. [6] 尹 奎. 提高XFY公司粉煤灰储存经济效益综合方案研究[D]. 南宁: 广西大学, 2020: 5-10. YIN K. Study on comprehensive scheme to improve the economic benefit of fly ash storage in XFY company[D]. Nanning: Guangxi University, 2020: 5-10 (in Chinese). [7] 宋 刚. 一种平板基础式钢板仓: CN209817548U[P]. 2019-12-20. SONG G. A kind of plate foundation type steel silo: CN209817548U[P]. 2019-12-20 (in Chinese). [8] 薛超成, 刘明华, 汤晓丹. 一种粉煤灰储存仓: CN202321967303.1[P]. 2023-12-15. XUE C C, LIU M H, TANG X D. A fly ash storage silo: CN202321967303.1[P]. 2023-12-15 (in Chinese). [9] 魏林宏, 叶念军, 朱春芳, 等. 露天堆放粉煤灰对地下水的污染研究[J]. 高校地质学报, 2013, 19(4): 683-691. WEI L H, YE N J, ZHU C F, et al. Effects of air exposed coal fly ash on groundwater contamination[J]. Geological Journal of China Universities, 2013, 19(4): 683-691 (in Chinese). [10] 尹 奎, 李 峰, 娄广辉. 粉煤灰储存方式及储存管理探讨[J]. 河南建材, 2020(1): 69-71. YIN K, LI F, LOU G H. Discussion on storage mode and management of fly ash[J]. Henan Building Materials, 2020(1): 69-71 (in Chinese). [11] 龚本根. 粉煤灰及其利用过程中微量元素迁移转化规律和环境影响研究[D]. 武汉: 华中科技大学, 2018: 121-125. GONG B G. Study on migration and transformation law and environmental impact of trace elements in fly ash and its utilization[D]. Wuhan: Huazhong University of Science and Technology, 2018: 121-125 (in Chinese). [12] 迟玉玺. 粉煤灰及其资源化利用过程重金属生态健康风险研究[D]. 兰州: 西北师范大学, 2023: 21-25. CHI Y X. Study on ecological health risk of heavy metals in fly ash and its resource utilization[D]. Lanzhou: Northwest Normal University, 2023: 21-25 (in Chinese). [13] ZONG Y B, LI F, CHEN W H, et al. Extraction of alumina from high-alumina coal ash using an alkaline hydrothermal method[J]. SN Applied Sciences, 2019, 1(7): 783. [14] 张宁宁, 石忠钰, 韩 瑞, 等. 粉煤灰“工程型”及“产品型”资源化利用研究进展[J]. 金属矿山, 2022(5): 26-36. ZHANG N N, SHI Z Y, HAN R, et al. Research progress of “engineering type” and “product type” resource utilization of ccoal fly ash[J]. Metal Mine, 2022(5): 26-36 (in Chinese). [15] 邢静锴, 齐德娥, 秦身钧, 等. 粉煤灰中有价元素的高值化利用研究进展[J]. 现代化工, 2023, 43(7): 39-43+49. XING J K, QI D E, QIN S J, et al. Research progress on high-value utilization of valuable elements in fly ash[J]. Modern Chemical Industry, 2023, 43(7): 39-43+49 (in Chinese). [16] MATHAPATI M, AMATE K, DURGA PRASAD C, et al. A review on fly ash utilization[J]. Materials Today: Proceedings, 2022, 50: 1535-1540. [17] SHAHEEN S M, HOODA P S, TSADILAS C D. Opportunities and challenges in the use of coal fly ash for soil improvements: a review[J]. Journal of Environmental Management, 2014, 145: 249-267. [18] LUO Y, WU Y H, MA S H, et al. Utilization of coal fly ash in China: a mini-review on challenges and future directions[J]. Environmental Science and Pollution Research, 2021, 28(15): 18727-18740. [19] 王 倩, 李神勇, 康 帅, 等. 粉煤灰分质高效利用预处理技术的研究进展[J]. 化工学报, 2023, 74(3): 1010-1032. WANG Q, LI S Y, KANG S, et al. Research progress of pretreatment technology for efficient utilization of coal ash[J]. CIESC Journal, 2023, 74(3): 1010-1032 (in Chinese). [20] 秦身钧, 徐 飞, 崔 莉, 等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术, 2022, 50(3): 1-38. QIN S J, XU F, CUI L, et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology, 2022, 50(3): 1-38 (in Chinese). [21] 吴锦文, 邓小伟, 焦飞硕, 等. 煤基灰/渣的大宗资源化利用现状及发展趋势[J]. 煤炭科学技术, 2024: 52(6): 238-252. WU J W, DENG X W, JIAO F S, et al. Resource utilization status and development trend of bulk resource utilization of coal-based ash/slag[J]. Coal Science and Technology, 2024: 52(6): 238-252 (in Chinese). [22] WANG N N, SUN X Y, ZHAO Q, et al. Leachability and adverse effects of coal fly ash: a review[J]. Journal of Hazardous Materials, 2020, 396: 122725. [23] RAM L C, MASTO R E. Fly ash for soil amelioration: a review on the influence of ash blending with inorganic and organic amendments[J]. Earth-Science Reviews, 2014, 128: 52-74. [24] KETRIS M P, YUDOVICH Y E. Estimations of Clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology, 2009, 78(2): 135-148. [25] 郑以梅. 粉煤灰中环境敏感性微量元素含量分布及淋滤析出特征研究[D]. 合肥: 安徽大学, 2017: 44-46. ZHENG Y M. Study on content distribution and leaching characteristics of environmentally sensitive trace elements in fly ash[D]. Hefei: Anhui University, 2017: 44-46 (in Chinese). [26] 张治国, 谭雨柠, 胡友彪, 等. 宁东能源化工基地粉煤灰重金属赋存特征及生态风险评价[J]. 煤田地质与勘探, 2022, 50(11): 144-152. ZHANG Z G, TAN Y N, HU Y B, et al. Occurrence characteristics and ecological risk assessment of heavy metals in fly ash of Ningdong Energy Chemical Industry Base[J]. Coal Geology & Exploration, 2022, 50(11): 144-152 (in Chinese). [27] 王靖楠, 刘章现, 李 荣, 等. 燃煤电厂原煤和粉煤灰中元素含量分析及迁移研究[J]. 河南城建学院学报, 2014, 23(1): 27-31. WANG J N, LIU Z X, LI R, et al. Analysis of element content and discussion on migration of coal and flyash in coal-fired power plant[J]. Journal of Henan University of Urban Construction, 2014, 23(1): 27-31 (in Chinese). [28] 冯明星. 粉煤灰堆场周边大气降尘与表层土壤重金属时空分布特征研究[D]. 晋中: 山西农业大学, 2022. FENG M X. Study on temporal and spatial distribution characteristics of atmospheric dustfall around fly ash yard and heavy metals in surface soil[D]. Jinzhong: Shanxi Agricultural University, 2022 (in Chinese). [29] 史鹏程. 粉煤灰合成Cu-SSZ-13分子筛过程中重金属迁移规律的研究[D]. 太原: 太原理工大学, 2022: 39-41. SHI P C. Study on heavy metal migration in the process of synthesizing Cu-SSZ-13 molecular sieve from fly ash[D]. Taiyuan: Taiyuan University of Technology, 2022: 39-41 (in Chinese). [30] 张 儒. 粉煤灰微观性形态组成及重金属溶出研究[J]. 山西建筑, 2013, 39(12): 96-98. ZHANG R. Research on fly ash micromorphology composition and heavy leaching metal[J]. Shanxi Architecture, 2013, 39(12): 96-98 (in Chinese). [31] WANG J X, YANG Z, QIN S J, et al. Distribution characteristics and migration patterns of hazardous trace elements in coal combustion products of power plants[J]. Fuel, 2019, 258: 116062. [32] 杨 珍. 邯郸电厂燃煤产物中有害元素地球化学特征及迁移规律[D]. 邯郸: 河北工程大学, 2019: 26-28. YANG Z. Geochemical characteristics and migration law of harmful elements in coal-fired products of Handan Power Plant[D]. Handan: Hebei University of Engineering, 2019: 26-28 (in Chinese). [33] 吴 涛. 不同淋滤方法对煤灰中痕量元素淋滤特性影响的研究[D]. 武汉: 华中科技大学, 2009. WU T. Effect of different leaching methods on leaching characteristics of trace elements in coal ash[D]. Wuhan: Huazhong University of Science and Technology, 2009 (in Chinese). [34] 朱加华, 张绪敏, 刘 丹, 等. 毕节市粉煤灰重金属形态分析及风险评价[J]. 山东化工, 2021, 50(14): 230-233. ZHU J H, ZHANG X M, LIU D, et al. Speciation analysis and risk assessment of heavy metals in fly ash of Bijie city[J]. Shandong Chemical Industry, 2021, 50(14): 230-233 (in Chinese). [35] 刘汇东. 重庆主要电厂燃煤产物的物质组成及粉煤灰的资源化利用[D]. 北京: 中国矿业大学, 2015: 45-51. LIU H D. Composition of the coal combustion and utilization of the fly ash generated from two major coal-fired power plants in Chongqing City, Southwest China[D]. Beijing: China University of Mining and Technology, 2015: 45-51 (in Chinese). [36] 武 琳. 粉煤灰用作土壤改良剂的污染风险评价及影响因子研究[D]. 淮南: 安徽理工大学, 2021: 20-25. WU L. Study on pollution risk assessment and influencing factors of fly ash used as soil improver[D]. Huainan: Anhui University of Science & Technology, 2021: 20-25 (in Chinese). [37] ZHANG Y S, SHANG P F, WANG J W, et al. Trace element (Hg, As, Cr, Cd, Pb) distribution and speciation in coal-fired power plants[J]. Fuel, 2017, 208: 647-654. [38] 陈国杰. 循环流化床粉煤灰物化特性及重金属浸出影响研究[D]. 太原: 太原理工大学, 2021: 43-44. CHEN G J. Study on physicochemical properties of circulating fluidized bed fly ash and the effect of heavy metal leaching[D]. Taiyuan: Taiyuan University of Technology, 2021: 43-44 (in Chinese). [39] GONG B G, TIAN C, XIONG Z, et al. Mineral changes and trace element releases during extraction of alumina from high aluminum fly ash in Inner Mongolia, China[J]. International Journal of Coal Geology, 2016, 166: 96-107. [40] 郝 炜. 粉煤灰内金属浸溶特性的试验和模拟研究[D]. 武汉: 华中科技大学, 2007: 25-36. HAO W. Experimental and simulation study on leaching characteristics of metals in fly ash[D]. Wuhan: Huazhong University of Science and Technology, 2007: 25-36 (in Chinese). [41] 龚 勋, 郝 炜, 张 丹, 等. 燃煤锅炉粉煤灰中典型痕量金属元素淋滤特性研究[J]. 工程热物理学报, 2009, 30(1): 156-160. GONG X, HAO W, ZHANG D, et al. Leaching characteristics of heavy metals in fly ash from different esps of coal-fired power plant[J]. Journal of Engineering Thermophysics, 2009, 30(1): 156-160 (in Chinese). [42] 项 玮. 脱硫粉煤灰元素释放动力学特征与风险评价[D]. 徐州: 中国矿业大学, 2011: 66-69. XIANG W. Kinetic characteristics and risk assessment of element release from desulfurization fly ash[D]. Xuzhou: China University of Mining and Technology, 2011: 66-69 (in Chinese). [43] 吴国强. 煤及其煤灰中稀土元素赋存形态和提取研究[D]. 北京: 华北电力大学, 2022: 86-101. WU G Q. Study on occurrence and extraction of rare earth elements in coal and its ash[D]. Beijing: North China Electric Power University, 2022: 86-101 (in Chinese). [44] 杜世勋, 李晓姣, 袁 进, 等. 山西省循环流化床粉煤灰环境风险评估及管控建议[J]. 环境保护科学, 2022, 48(1): 21-24+38. DU S X, LI X J, YUAN J, et al. Environmental risk assessment and management suggestions of circulating fluidized bed fly ash in Shanxi Province[J]. Environmental Protection Science, 2022, 48(1): 21-24+38 (in Chinese). [45] PANDEY S K, BHATTACHARYA T. Mobility, ecological risk and change in surface morphology during sequential chemical extraction of heavy metals in fly ash: a case study[J]. Environmental Technology & Innovation, 2019, 13: 373-382. [46] HAILU S L, MCCRINDLE R I, SEOPELA M P, et al. Speciation of major and trace elements leached from coal fly ash and the kinetics involved[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2019, 54(12): 1186-1196. [47] ZHANG Z G, CAI W Q, HU Y B, et al. Ecological risk assessment and influencing factors of heavy-metal leaching from coal-based solid waste fly ash[J]. Frontiers in Chemistry, 2022, 10: 932133. [48] 李立园. 燃煤过程中铬的赋存和演化规律研究[D]. 合肥: 安徽大学, 2018: 25-30. LI L Y. Study on the occurrence and evolution of chromium during coal combustion[D]. Hefei: Anhui University, 2018: 25-30 (in Chinese). [49] LIU P, WANG Q, JUNG H, et al. Speciation, distribution, and mobility of hazardous trace elements in coal fly ash: insights from Cr, Ni, and Cu[J]. Energy & Fuels, 2020, 34(11): 14333-14343. [50] 武艳菊, 刘振学, 初乃波. 粉煤灰中重金属元素镉的分析测定[J]. 粉煤灰, 2005(1): 47-48. WU Y J, LIU Z X, CHU N B. Analysis and measurement of heavy metal cadmium in fly ash[J]. Coal Ash China, 2005(1): 47-48 (in Chinese). [51] 刘宝勇, 姚同宇, 马淑花, 等. 粉煤灰基土壤调理剂中重金属赋存形态和溶出规律[J]. 环境科学与技术, 2021, 44(增刊2): 292-298. LIU B Y, YAO T Y, MA S H, et al. Occurrence and dissolution of heavy metals in fly ash-based soil conditioner[J]. Environmental Science & Technology, 2021, 44(supplement 2): 292-298 (in Chinese). [52] 迟玉玺, 石 垚, 曹 春, 等. 基于物质流分析的高铝粉煤灰制备莫来石过程重金属迁移规律及环境风险研究[J]. 环境科学学报, 2023, 43(4): 427-438. CHI Y X, SHI Y, CAO C, et al. Migration and environmental risk of heavy metals during mullite preparation by high alumina fly ash based on material flow analysis[J]. Acta Scientiae Circumstantiae, 2023, 43(4): 427-438 (in Chinese). [53] 郑景华, 苏华美, 范荣桂, 等. 砷在煤及燃煤产物中的迁移规律研究[J]. 安全与环境学报, 2014, 14(3): 255-258. ZHENG J H, SU H M, FAN R G, et al. Migration regularity of arsenic content in the coal and coal-burning residue[J]. Journal of Safety and Environment, 2014, 14(3): 255-258 (in Chinese). [54] 刘福立, 马淑花, 任 坤, 等. 粉煤灰中重金属元素砷的赋存状态与分离方法[J]. 过程工程学报, 2020, 20(5): 540-547. LIU F L, MA S H, REN K, et al. Occurrence state and separation method of heavy metal element arsenic in coal fly ash[J]. The Chinese Journal of Process Engineering, 2020, 20(5): 540-547 (in Chinese). [55] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. [56] ZHAO S L, DUAN Y F, LU J C, et al. Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants[J]. Fuel, 2018, 232: 463-469. [57] PAN J H, ZHOU C C, TANG M C, et al. Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure[J]. Fuel, 2019, 237: 555-565. [58] 刘 梦, 郑刘根, 陈永春, 等. 燃煤过程中As、Se、Sb释放与迁移规律研究[J]. 应用化工, 2021, 50(5): 1173-1177. LIU M, ZHENG L G, CHEN Y C, et al. Study on the release and migration of arsenic, selenium and antimony during coal combustion[J]. Applied Chemical Industry, 2021, 50(5): 1173-1177 (in Chinese). [59] SAHA D, CHATTERJEE D, CHAKRAVARTY S, et al. Investigation of environmental-concern trace elements in coal and their combustion residues from thermal power plants in eastern India[J]. Natural Resources Research, 2019, 28(4): 1505-1520. [60] 郑海亮, 魏继莲. 淮南洛河电厂储灰场粉煤灰有害金属随水迁移性研究[J]. 矿业安全与环保, 2004, 31(2): 9-12. ZHENG H L, WEI J L. Study of mitigation of harmful metal in coal ash with water at ash with yard in Huainan lehe power plant[J]. Mining Safety & Environmental Protection, 2004, 31(2): 9-12 (in Chinese). [61] 闫志谦, 程艳坤, 张雪梅, 等. 粉煤灰中重金属Pb的淋滤实验研究[J]. 煤炭技术, 2013, 32(7): 140-141. YAN Z Q, CHENG Y K, ZHANG X M, et al. Experiment research of heavy metal lead in fly ash leaching[J]. Coal Technology, 2013, 32(7): 140-141 (in Chinese). [62] LUAN J D, CHAI M Y, LI R D. Heavy metal migration and potential environmental risk assessment during the washing process of MSW incineration fly ash and molten slag[J]. Procedia Environmental Sciences, 2016, 31: 351-360. [63] SHAO P, HOU H J, WANG W L, et al. Geochemistry and mineralogy of fly ash from the high-alumina coal, Datong Coalfield, Shanxi, China[J]. Ore Geology Reviews, 2023, 158: 105476. [64] 黄文辉, 杨 起, 彭苏萍, 等. 淮南二叠纪煤及其燃烧产物地球化学特征[J]. 地球科学, 2001, 26(5): 501-507. HUANG W H, YANG Q, PENG S P, et al. Geochemistry of Permian coal and its combustion residues from Huainan Coalfield[J]. Earth Science, 2001, 26(5): 501-507 (in Chinese). [65] 毛礼鑫, 朱士飞, 吴 蒙, 等. 燃煤固废重金属分布特征与环境风险[J]. 中国科技论文, 2023, 18(9): 1028-1034. MAO L X, ZHU S F, WU M, et al. Distribution and environmental risk assessment of heavy metals in coal-fired products of power plants[J]. China Sciencepaper, 2023, 18(9): 1028-1034 (in Chinese). [66] FUJIMORI E, ICHIKAWA K, SHIOZAWA R, et al. Multielement determination and distributions of major-to-ultratrace elements in industrial waste incineration bottom ash as studied by ICP-AES and ICP-MS[J]. Bulletin of the Chemical Society of Japan, 2001, 74(11): 2045-2051. [67] 李 俏, 董 阳, 卓锦德, 等. 粒径对粉煤灰矿物相及反应活性的影响[J]. 洁净煤技术, 2023, 29(增刊2): 42-45. LI Q, DONG Y, ZHUO J D, et al. Effect of particle size on mineral phases and reactivity of fly ash[J]. Clean Coal Technology, 2023, 29(supplement 2): 42-45 (in Chinese). [68] 张子晗, 李晓姣, 王红涛, 等. 循环流化床粉煤灰特性对重金属赋存迁移的影响研究进展[J]. 应用化工, 2023, 52(11): 3205-3209. ZHANG Z H, LI X J, WANG H T, et al. Research progress on influence of fly ash characteristics on occurrence and migration of heavy metals in circulating fluidized bed[J]. Applied Chemical Industry, 2023, 52(11): 3205-3209 (in Chinese). [69] 王智欣, 张凝凝, 彭宝山. 粉煤灰中微量有害元素的淋滤特性研究[J]. 煤化工, 2022, 50(5): 83-86+90. WANG Z X, ZHANG N N, PENG B S. Study on leaching characteristics of trace harmful elements in fly ash[J]. Coal Chemical Industry, 2022, 50(5): 83-86+90 (in Chinese). [70] 孙 敏, 唐 莹, 郝亚婷, 等. 红枫湖水源地附近粉煤灰堆积场重金属存在形态及静态淋溶规律[J]. 环境化学, 2021, 40(3): 678-686. SUN M, TANG Y, HAO Y T, et al. Heavy metal existence and static leaching rules in fly ash accumulation field near Hongfeng Lake water source[J]. Environmental Chemistry, 2021, 40(3): 678-686 (in Chinese). [71] LANZERSTORFER C. Fly ash from coal combustion: dependence of the concentration of various elements on the particle size[J]. Fuel, 2018, 228: 263-271. [72] TANG M C, ZHOU C C, PAN J H, et al. Study on extraction of rare earth elements from coal fly ash through alkali fusion-acid leaching[J]. Minerals Engineering, 2019, 136: 36-42. [73] 姚同宇. 粉煤灰基土壤调理剂改良锡盟退化草原应用研究[D]. 阜新: 辽宁工程技术大学, 2021: 24-26. YAO T Y. Study on application of fly ash-based soil conditioner to improve degraded grassland in Ximeng[D]. Fuxin: Liaoning Technical University, 2021: 24-26 (in Chinese). [74] TSIOPTSIAS C, SAMIOTIS G, LEFTERI L, et al. Cr(VI) leached from lignite fly ash: assessment of groundwater contamination risk[J]. Water, Air, & Soil Pollution, 2020, 231(7): 373. [75] WARD C R, FRENCH D, JANKOWSKI J, et al. Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station[J]. International Journal of Coal Geology, 2009, 80(3/4): 224-236. [76] IZQUIERDO M, QUEROL X. Leaching behaviour of elements from coal combustion fly ash: an overview[J]. International Journal of Coal Geology, 2012, 94: 54-66. [77] 吴贤中, 汪 斌, 李尉卿. 粉煤灰及其建材制品中有害元素在水体中的浸出及放射性水平的研究[J]. 建筑砌块与砌块建筑, 1997(1): 11-14. WU X Z, WANG B, LI W Q. Research on the leaching and radioactivity levels of harmful elements in fly ash and its construction products in water bodies[J]. Structures Units & Units Architecture, 1997(1): 11-14 (in Chinese). [78] 余其俊, 成 立, 赵三银, 等. 水泥和粉煤灰中重金属和有毒离子的溶出问题及思考[J]. 水泥, 2003(1): 8-15. YU Q J, CHENG L, ZHAO S Y, et al. Study on leaching of metal ions and toxic ions from cement and fly ash[J]. Cement, 2003(1): 8-15 (in Chinese). [79] NAGATAKI S, YU Q, HISADA M. Effect of leaching conditions and curing time on the leaching of heavy metals in fly ash cement mortars[J]. Advances in Cement Research, 2002, 14(2): 71-83. [80] 徐 红. 粉煤灰微量元素含量和放射性安全评价──粉煤灰建筑砂浆的基础研究之三[J]. 电力环境保护, 2000, 16(1): 10-12. XU H. Trace element content and radioactive safety evaluation of fly ash: the third basic research on fly ash construction mortar[J]. Electric Power Technology and Environmental Protection, 2000, 16(1): 10-12 (in Chinese). [81] WANG C Q, ZENG Z Y, WANG A M, et al. Basic properties, characteristic heavy metals leaching and migration of coal incineration fly ash-based mortar[J]. Structures, 2023, 54: 1179-1195. [82] AHMARUZZAMAN M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010, 36(3): 327-363. [83] 霍彬彬, 张亚梅, 王栋民, 等. 甲酸干法化学改性钢渣粉及其浆体性能研究[J]. 矿业科学学报, 2022, 7(5): 522-528. HUO B B, ZHANG Y M, WANG D M, et al. Investigating the performance of dry chemically modified steel slag powder and pastes by formic acid[J]. Journal of Mining Science and Technology, 2022, 7(5): 522-528(in Chinese). [84] 高英力, 孟 浩, 万红伟, 等. 电石渣碱激发矿渣/粉煤灰胶凝材料性能及微结构[J]. 中南大学学报(自然科学版), 2023, 54(5): 1739-1747. GAO Y L, MENG H, WAN H W, et al. Properties and microstructure of alkali-activated cementitious materials prepared with carbide slag-slag-fly ash solid waste[J]. Journal of Central South University (Science and Technology), 2023, 54(5): 1739-1747 (in Chinese). [85] 陈国杰, 袁 进, 刘玉香, 等. 循环流化床粉煤灰中重金属的浸出性研究进展[J]. 应用化工, 2022, 51(7): 2121-2125+2133. CHEN G J, YUAN J, LIU Y X, et al. Progress of study on leaching characteristics of heavy metals from circulating fluidized bed fly ash[J]. Applied Chemical Industry, 2022, 51(7): 2121-2125+2133 (in Chinese). [86] 时雅倩, 关渝珊, 葛伟哲, 等. 粉煤灰建材化增值利用: 最新技术与未来展望[J]. 煤炭学报, 2024, 49(6): 2860-2875. SHI Y Q, GUAN Y S, GE W Z, et al. Value-added utilization of pulverized fuel ash as construction materials: state-of-the-art technologies and future prospects[J]. Journal of China Coal Society, 2024, 49(6): 2860-2875 (in Chinese). [87] 陈 炜, 何 耀, 张明亮, 等. 碳纤维增强碱激发粉煤灰矿渣混凝土的高温损伤研究[J]. 硅酸盐通报, 2014, 33(7): 1833-1837. CHEN W, HE Y, ZHANG M L, et al. Research on the high temperature damage of carbon fiber reinforced alkali activated fly ash-slag concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(7): 1833-1837 (in Chinese). [88] 黄煌煌, 陈铁锋, 高小建. CO2矿化改性高钙粉煤灰对水泥砂浆力学性能和微结构的影响[J]. 硅酸盐通报, 2024, 43(5): 1889-1896. HUANG H H, CHEN T F, GAO X J. Effect of CO2-mineralized high-calcium fly ash on mechanical properties and micro-structure of cement mortar[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1889-1896 (in Chinese). [89] 刘文斌, 刘晨凌, 徐永红. 化学外加剂对粉煤灰砂浆的改性研究[J]. 粉煤灰综合利用, 2008, 21(2): 37-38. LIU W B, LIU C L, XU Y H. The research on fly ash mortar performance through adding chemistry admixtures[J]. Fly Ash Comprehensive Utilization, 2008, 21(2): 37-38 (in Chinese). [90] 张 晶, 李 敏, 杨海燕, 等. 粉煤灰充填复垦下大豆和玉米的生长状况及环境风险评估[J]. 农业环境科学学报, 2011, 30(8): 1586-1593. ZHANG J, LI M, YANG H Y, et al. Evaluation of soybean and corn growth and environmental risk in different patterns of reclaimed land filled with fly ash[J]. Journal of Agro-Environment Science, 2011, 30(8): 1586-1593 (in Chinese). [91] 蒋武燕, 宋世杰. 粉煤灰在土壤修复与改良中的应用[J]. 煤炭加工与综合利用, 2011(3): 57-61. JIANG W Y, SONG S J. Application of fly ash in soil rehabilitation and improvement[J]. Coal Processing & Comprehensive Utilization, 2011(3): 57-61 (in Chinese). [92] 樊 雯. 基于粉煤灰充填复垦土地的复垦效应研究[D]. 淮南: 安徽理工大学, 2010: 33-35. FAN W. Study on reclamation effect of reclaimed land filled with fly ash[D]. Huainan: Anhui University of Science & Technology, 2010: 33-35 (in Chinese). [93] 徐良骥, 许善文, 杨秀芳, 等. 粉煤灰充填复垦地理化特性与重金属分布特征研究——以淮南洛河电厂粉煤灰复垦地为例[J]. 农业环境科学学报, 2012, 31(12): 2352-2360. XU L J, XU S W, YANG X F, et al. Study on distribution character of physical and chemical properties and heavy metals in reclaimed land filled with fly ash: a case study of reclaimed land of Luohe power plant in Huainan City[J]. Journal of Agro-environment Science, 2012, 31(12): 2352-2360 (in Chinese). [94] 杨秀红, 胡振琪, 张学礼. 粉煤灰充填复垦土地风险评价及稳定化修复技术[J]. 科技导报, 2006, 24(3): 33-35. YANG X H, HU Z Q, ZHANG X L. Risk assessment of reclaimed land filled with fly ash and stabilization remediation technology[J]. Science & Technology Review, 2006, 24(3): 33-35 (in Chinese). [95] 胡振琪, 戚家忠, 司继涛. 不同复垦时间的粉煤灰充填复垦土壤重金属污染与评价[J]. 农业工程学报, 2003, 19(2): 214-218. HU Z Q, QI J Z, SI J T. Contamination and assessment of heavy metals in fly ash reclaimed soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(2): 214-218 (in Chinese). [96] KICINSKA A, POMYKALA R, IZQUIERDO-DIAZ M. Changes in soil pH and mobility of heavy metals in contaminated soils[J]. European Journal of Soil Science, 2022, 73(1): e13203. [97] ZHANG Q, LIU G J, PENG S C, et al. Leaching of arsenic, chromium, and copper from coal fly ash treated soil[J]. Analytical Letters, 2016, 49(13): 2146-2156. [98] 蔡维卿. 粉煤灰添加对复垦土壤重金属的赋存特征影响及风险评价[D]. 淮南: 安徽理工大学, 2023: 39-41. CAI W Q. Effect of fly ash addition on occurrence characteristics and risk assessment of heavy metals in reclaimed soil[D]. Huainan: Anhui University of Science & Technology, 2023: 39-41 (in Chinese). [99] ZHOU W, LU X, QI C C, et al. Utilisation of ultrasonic treatment to improve the soil amelioration property of coal fly ash[J]. Journal of Environmental Management, 2020, 276: 111311. [100] 崔家新, 王连勇, 卢思盟, 等. 几种不同产地粉煤灰水热法合成沸石性能探究[J]. 无机盐工业, 2022, 54(5): 96-100. CUI J X, WANG L Y, LU S M, et al. Research on performance of hydrothermally synthesized zeolite with fly ash from different producing areas[J]. Inorganic Chemicals Industry, 2022, 54(5): 96-100 (in Chinese). [101] 谭宏斌, 马小玲, 王永善. 水热法提取粉煤灰中硅合成P型沸石研究[J]. 煤炭科学技术, 2007, 35(11): 84-86. TAN H B, MA X L, WANG Y S. Research on hydrothermal method to extract silicon synthetic P type zeolite from fly ash[J]. Coal Science and Technology, 2007, 35(11): 84-86 (in Chinese). [102] 竹 涛, 韩一伟, 牛文风, 等. 粉煤灰制备13X分子筛及VOCs吸附性能研究[J]. 煤炭科学技术, 2021, 49(7): 216-222. ZHU T, HAN Y W, NIU W F, et al. Preparation of 13X zeolite by coal fly ash for adsorption of volatile organic compounds[J]. Coal Science and Technology, 2021, 49(7): 216-222 (in Chinese). [103] FENG W, WAN Z J, DANIELS J, et al. Synthesis of high quality zeolites from coal fly ash: mobility of hazardous elements and environmental applications[J]. Journal of Cleaner Production, 2018, 202: 390-400. [104] SONG H P, WEI L F, JI Y L, et al. Heavy metal fixing and heat resistance abilities of coal fly ash-waste glass based geopolymers by hydrothermal hot pressing[J]. Advanced Powder Technology, 2018, 29(6): 1487-1492. [105] 王亚光. 粉煤灰/电解锰渣地质聚合物材料的制备及其性能研究[D]. 银川: 北方民族大学, 2018: 28-42. WANG Y G. Preparation and properties of fly ash/electrolytic manganese slag geopolymer material[D]. Yinchuan: Beifang University of Nationalities, 2018: 28-42 (in Chinese). [106] 仇秀梅. 粉煤灰基地质聚合物固封重金属及原位转化分子筛的研究[D]. 武汉: 中国地质大学, 2015: 38-56. QIU X M. Research on immobilization of heavy metal and in situ translation into zeolite through using fly ash based geopolymer[D]. Wuhan: China University of Geosciences, 2015: 38-56 (in Chinese). [107] MORGADO PRATES A R, DANIEL C, PAGIS C, et al. Faster transport in hollow zeolites[J]. Microporous and Mesoporous Materials, 2020, 308: 110499. [108] YAN J S, LI Y, LI H R, et al. Effective removal of ruthenium (III) ions from wastewater by amidoxime modified zeolite X[J]. Microchemical Journal, 2019, 145: 287-294. [109] 李喜林, 仝重凯, 刘 玲, 等. 粉煤灰合成沸石对铬污染土壤中Cr(III)的吸附稳定化效果及机制研究[J]. 安全与环境学报, 2021, 21(3): 1240-1248. LI X L, TONG C K, LIU L, et al. Study on the stabilization effect and mechanism of the synthesized zeolite from fly ash on Cr(III) in chromium contaminated soil[J]. Journal of Safety and Environment, 2021, 21(3): 1240-1248 (in Chinese). [110] HUI K S, CHAO C Y H, KOT S C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash[J]. Journal of Hazardous Materials, 2005, 127(1/2/3): 89-101. [111] DAVIDOVITS J. Geopolymer chemistry and sustainable development[C]//Proceedings of the world congress geopolymer, 2005: 9-15. [112] PHAIR J W, VAN DEVENTER J S J. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers[J]. Minerals Engineering, 2001, 14(3): 289-304. [113] VAN JAARSVELD J G S, VAN DEVENTER J S J, LORENZEN L. Factors affecting the immobilization of metals in geopolymerized flyash[J]. Metallurgical and Materials Transactions B, 1998, 29(1): 283-291. [114] LI S, HUANG X, MUHAMMAD F, et al. Waste solidification/stabilization of lead-zinc slag by utilizing fly ash based geopolymers[J]. RSC Advances, 2018, 8(57): 32956-32965. [115] 高志娟, 王相人. 煤粉炉粉煤灰提取氧化铝活化技术研究进展[J]. 无机盐工业, 2021, 53(2): 24-27. GAO Z J, WANG X R. Research progress in alumina activation technology from pulverized-coal fly ash[J]. Inorganic Chemicals Industry, 2021, 53(2): 24-27 (in Chinese). [116] 秦身钧, 徐 飞, 李神勇, 等. 粉煤灰中稀土元素的赋存及其提取研究进展[J]. 稀有金属, 2022, 46(8): 1097-1110. QIN S J, XU F, LI S Y, et al. Research progress on occurrence of rare earth elements in coal fly ash and their extraction[J]. Chinese Journal of Rare Metals, 2022, 46(8): 1097-1110 (in Chinese). [117] 邵 培. 高铝煤与煤灰中Li-Ga-REE等多元素共生组合特征及协同分离——以大同煤田为例[D]. 徐州: 中国矿业大学, 2019: 97-114. SHAO P. Characteristics and synergistic separation of Li-Ga-REE and other multi-elements in high alumina coal and coal ash: taking Datong Coalfield as an example[D]. Xuzhou: China University of Mining and Technology, 2019: 97-114 (in Chinese). [118] LIU P, ZHAO S M, XIE N, et al. Green approach for rare earth element (REE) recovery from coal fly ash[J]. Environmental Science & Technology, 2023, 57(13): 5414-5423. [119] TAGGART R K, HOWER J C, HSU-KIM H. Effects of roasting additives and leaching parameters on the extraction of rare earth elements from coal fly ash[J]. International Journal of Coal Geology, 2018, 196: 106-114. [120] PONOU J, DODBIBA G, ANH J W, et al. Selective recovery of rare earth elements from aqueous solution obtained from coal power plant ash[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 3761-3766. [121] 李 琴, 徐 舒, 顾闫悦, 等. 我国粉煤灰生态环境标准体系现状及建议[J]. 环境工程技术学报, 2023, 13(1): 438-446. LI Q, XU S, GU Y Y, et al. Present status and suggestions on the standard system of ecology and environment of fly ash in China[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 438-446 (in Chinese). [122] 刘培陶, 崔龙鹏, 沈卫星, 等. 粉煤灰堆放场土壤环境微量元素分析与风险评价[J]. 农业环境科学学报, 2008, 27(1): 207-211. LIU P T, CUI L P, SHEN W X, et al. Determination of environmental trace elements in soils surrounding coal fly ash landfill pond and risk assessment[J]. Journal of Agro-Environment Science, 2008, 27(1): 207-211 (in Chinese). [123] USMANI Z, KUMAR V. Characterization, partitioning, and potential ecological risk quantification of trace elements in coal fly ash[J]. Environmental Science and Pollution Research, 2017, 24(18): 15547-15566. [124] LI W H, SUN Y J, HUANG Y M, et al. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash[J]. Waste Management, 2019, 87: 407-416. [125] 许桂苹, 王晓飞, 付 洁. 土壤重金属污染评价方法研究综述[J]. 农村经济与科技, 2014, 25(1): 71-74. XU G P, WANG X F, FU J. Review on evaluation methods of soil heavy metal pollution[J]. Rural Economy and Science-Technology, 2014, 25(1): 71-74 (in Chinese). [126] 何思清. 内蒙古西部某矿区周边农田土壤重金属分布特征及风险评价[D]. 呼和浩特: 内蒙古农业大学, 2022: 5-8. HE S Q. Distribution characteristics and risk assessment of heavy metals in farmland soil around a mining area in western Inner Mongolia[D]. Hohhot: Mongolia Agricultural University, 2022: 5-8 (in Chinese). [127] LUAN J D, LI A M, SU T, et al. Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1109-1114. [128] 段志斌. 黔西北地质高背景下土法炼锌区土壤重金属的环境地球化学行为及健康风险研究[D]. 贵阳: 贵州大学, 2022: 48-49. DUAN Z B. Study on environmental geochemical behavior and health risk of heavy metals in soil of indigenous zinc smelting area under the high geological background in northwest Guizhou[D]. Guiyang: Guizhou University, 2022: 48-49 (in Chinese). [129] MULLER G. Index of geoaccumulation in sediments of the rhine river[J]. Geojournal, 1969, 2(3): 109-118. [130] WILLIAMS J A, ANTOINE J. Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index[J]. Marine Pollution Bulletin, 2020, 157: 111288. [131] TANG J, TANG H J, SIMA W P, et al. Heavy metal pollution level and potential ecological risk assessment of sludge landfill[J]. Environmental Progress & Sustainable Energy, 2022: 41(3): 1121-1138. |
[1] | 窦占双, 李晓民, 秦宏涛, 魏定邦, 武旭, 闫升, 张富强, 韩方元. 化学激发大掺量粉煤灰复合胶凝材料力学性能与水化机理研究[J]. 硅酸盐通报, 2025, 44(1): 243-252. |
[2] | 朱元浪, 张明亮, 魏京华, 张恒武, 刘子盼, 高嵩. 实海暴露环境再生混凝土三维逾渗特性研究[J]. 硅酸盐通报, 2025, 44(1): 274-288. |
[3] | 朱保顺, 田玉明, 牟维鹏, 高云峰, 丰铭, 李慧宇. 利用粉煤灰制备Ni负载的微波吸收材料[J]. 硅酸盐通报, 2024, 43(8): 3089-3097. |
[4] | 李相国, 魏武, 何超, 蔡礼雄, 吕阳, 但建明. 轻质高强蒸压加气混凝土的制备及性能研究[J]. 硅酸盐通报, 2024, 43(7): 2427-2433. |
[5] | 吕俊敏, 王正, 杨颖臻, 赵潇霞, 范素兵. 煤气化渣制备单一相Y分子筛研究[J]. 硅酸盐通报, 2024, 43(7): 2514-2521. |
[6] | 杨乐乐, 刘志远, 张亚龙, 张晓明, 程星星. 粉煤灰基沸石X的制备与邻二甲苯、CO2和H2的吸附应用[J]. 硅酸盐通报, 2024, 43(7): 2522-2529. |
[7] | 刘扬, 王家理, 罗冬, 袁和平, 鲁乃唯, 王柏文. 硅灰及矿渣粉对大掺量粉煤灰砂浆力学性能的影响及机理研究[J]. 硅酸盐通报, 2024, 43(7): 2584-2594. |
[8] | 刘晓江, 李之建. 粉煤灰对粉末3D打印磷酸镁水泥基材料耐水性能的影响[J]. 硅酸盐通报, 2024, 43(5): 1673-1682. |
[9] | 吴春群, 韩康, 栗登辉, 杨华山. 凹凸棒土对3D打印水泥基材料工作性能及抗压强度的影响[J]. 硅酸盐通报, 2024, 43(5): 1683-1693. |
[10] | 荆彪, 张凯峰, 桑国臣, 童小根, 朱王科. 两类三元胶凝体系的构建及配比优化[J]. 硅酸盐通报, 2024, 43(5): 1822-1831. |
[11] | 黄煌煌, 陈铁锋, 高小建. CO2矿化改性高钙粉煤灰对水泥砂浆力学性能和微结构的影响[J]. 硅酸盐通报, 2024, 43(5): 1889-1896. |
[12] | 庚利民, 杜红秀, 聂小青, 周星宇, 闫常昊, 雷一彬. 粉煤灰陶粒轻质混凝土声屏障性能试验研究[J]. 硅酸盐通报, 2024, 43(5): 1897-1905. |
[13] | 马英, 李淯伟, 邰安. 掺珊瑚砂粉砂浆抗硫酸镁侵蚀性能研究[J]. 硅酸盐通报, 2024, 43(4): 1380-1387. |
[14] | 曹启坤, 景昊星, 李豪. 基于响应曲面法的粉煤灰泡沫混凝土配合比优化[J]. 硅酸盐通报, 2024, 43(4): 1427-1435. |
[15] | 刘佳敏, 马玉薇, 李刚. 粉煤灰对渠道用混凝土抗冻及抗冲磨性能的影响[J]. 硅酸盐通报, 2024, 43(4): 1436-1444. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||